Exemplo n.º 1
0
def test_isomap_reconstruction_error():
    # Same setup as in test_isomap_simple_grid, with an added dimension
    N_per_side = 5
    Npts = N_per_side**2
    n_neighbors = Npts - 1

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(N_per_side), repeat=2)))

    # add noise in a third dimension
    rng = np.random.RandomState(0)
    noise = 0.1 * rng.randn(Npts, 1)
    X = np.concatenate((X, noise), 1)

    # compute input kernel
    G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray()

    centerer = preprocessing.KernelCenterer()
    K = centerer.fit_transform(-0.5 * G**2)

    for eigen_solver in eigen_solvers:
        for path_method in path_methods:
            clf = manifold.Isomap(n_neighbors=n_neighbors,
                                  n_components=2,
                                  eigen_solver=eigen_solver,
                                  path_method=path_method)
            clf.fit(X)

            # compute output kernel
            G_iso = neighbors.kneighbors_graph(clf.embedding_,
                                               n_neighbors,
                                               mode='distance').toarray()

            K_iso = centerer.fit_transform(-0.5 * G_iso**2)

            # make sure error agrees
            reconstruction_error = np.linalg.norm(K - K_iso) / Npts
            assert_almost_equal(reconstruction_error,
                                clf.reconstruction_error())
Exemplo n.º 2
0
def test_isomap_simple_grid():
    # Isomap should preserve distances when all neighbors are used
    N_per_side = 5
    Npts = N_per_side**2
    n_neighbors = Npts - 1

    # grid of equidistant points in 2D, n_components = n_dim
    X = np.array(list(product(range(N_per_side), repeat=2)))

    # distances from each point to all others
    G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray()

    for eigen_solver in eigen_solvers:
        for path_method in path_methods:
            clf = manifold.Isomap(n_neighbors=n_neighbors,
                                  n_components=2,
                                  eigen_solver=eigen_solver,
                                  path_method=path_method)
            clf.fit(X)

            G_iso = neighbors.kneighbors_graph(clf.embedding_,
                                               n_neighbors,
                                               mode='distance').toarray()
            assert_array_almost_equal(G, G_iso)
Exemplo n.º 3
0
for i_dataset, (dataset, algo_params) in enumerate(datasets):
    # update parameters with dataset-specific values
    params = default_base.copy()
    params.update(algo_params)

    X, y = dataset

    # normalize dataset for easier parameter selection
    X = StandardScaler().fit_transform(X)

    # estimate bandwidth for mean shift
    bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile'])

    # connectivity matrix for structured Ward
    connectivity = kneighbors_graph(
        X, n_neighbors=params['n_neighbors'], include_self=False)
    # make connectivity symmetric
    connectivity = 0.5 * (connectivity + connectivity.T)

    # ============
    # Create cluster objects
    # ============
    ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
    two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters'])
    ward = cluster.AgglomerativeClustering(
        n_clusters=params['n_clusters'], linkage='ward',
        connectivity=connectivity)
    spectral = cluster.SpectralClustering(
        n_clusters=params['n_clusters'], eigen_solver='arpack',
        affinity="nearest_neighbors")
    dbscan = cluster.DBSCAN(eps=params['eps'])
Exemplo n.º 4
0
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
    ax.scatter(X[label == l, 0],
               X[label == l, 1],
               X[label == l, 2],
               color=plt.cm.jet(np.float(l) / np.max(label + 1)),
               s=20,
               edgecolor='k')
plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time)

# #############################################################################
# Define the structure A of the data. Here a 10 nearest neighbors
from mrex.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)

# #############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6,
                               connectivity=connectivity,
                               linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)

# #############################################################################
# Plot result
Exemplo n.º 5
0
np.random.seed(0)
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = t * np.sin(t)


X = np.concatenate((x, y))
X += .7 * np.random.randn(2, n_samples)
X = X.T

# Create a graph capturing local connectivity. Larger number of neighbors
# will give more homogeneous clusters to the cost of computation
# time. A very large number of neighbors gives more evenly distributed
# cluster sizes, but may not impose the local manifold structure of
# the data
knn_graph = kneighbors_graph(X, 30, include_self=False)

for connectivity in (None, knn_graph):
    for n_clusters in (30, 3):
        plt.figure(figsize=(10, 4))
        for index, linkage in enumerate(('average',
                                         'complete',
                                         'ward',
                                         'single')):
            plt.subplot(1, 4, index + 1)
            model = AgglomerativeClustering(linkage=linkage,
                                            connectivity=connectivity,
                                            n_clusters=n_clusters)
            t0 = time.time()
            model.fit(X)
            elapsed_time = time.time() - t0