Exemplo n.º 1
0
def test_rfe():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    X_sparse = sparse.csr_matrix(X)
    y = iris.target

    # dense model
    clf = SVC(kernel="linear")
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    X_r = rfe.transform(X)
    clf.fit(X_r, y)
    assert len(rfe.ranking_) == X.shape[1]

    # sparse model
    clf_sparse = SVC(kernel="linear")
    rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1)
    rfe_sparse.fit(X_sparse, y)
    X_r_sparse = rfe_sparse.transform(X_sparse)

    assert X_r.shape == iris.data.shape
    assert_array_almost_equal(X_r[:10], iris.data[:10])

    assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data))
    assert rfe.score(X, y) == clf.score(iris.data, iris.target)
    assert_array_almost_equal(X_r, X_r_sparse.toarray())
Exemplo n.º 2
0
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(X, y)

print("The best parameters are %s with a score of %0.2f" %
      (grid.best_params_, grid.best_score_))

# Now we need to fit a classifier for all parameters in the 2d version
# (we use a smaller set of parameters here because it takes a while to train)

C_2d_range = [1e-2, 1, 1e2]
gamma_2d_range = [1e-1, 1, 1e1]
classifiers = []
for C in C_2d_range:
    for gamma in gamma_2d_range:
        clf = SVC(C=C, gamma=gamma)
        clf.fit(X_2d, y_2d)
        classifiers.append((C, gamma, clf))

# #############################################################################
# Visualization
#
# draw visualization of parameter effects

plt.figure(figsize=(8, 6))
xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200))
for (k, (C, gamma, clf)) in enumerate(classifiers):
    # evaluate decision function in a grid
    Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    # visualize decision function for these parameters
Exemplo n.º 3
0
iris = datasets.load_iris()
X = iris.data[:, [0, 2]]
y = iris.target

# Training classifiers
clf1 = DecisionTreeClassifier(max_depth=4)
clf2 = KNeighborsClassifier(n_neighbors=7)
clf3 = SVC(gamma=.1, kernel='rbf', probability=True)
eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2),
                                    ('svc', clf3)],
                        voting='soft',
                        weights=[2, 1, 2])

clf1.fit(X, y)
clf2.fit(X, y)
clf3.fit(X, y)
eclf.fit(X, y)

# Plotting decision regions
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))

f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8))

for idx, clf, tt in zip(
        product([0, 1], [0, 1]), [clf1, clf2, clf3, eclf],
    ['Decision Tree (depth=4)', 'KNN (k=7)', 'Kernel SVM', 'Soft Voting']):

    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Exemplo n.º 4
0
# -------------------------
# First, we load the wine dataset and convert it to a binary classification
# problem. Then, we train a support vector classifier on a training dataset.
import matplotlib.pyplot as plt
from mrex.svm import SVC
from mrex.ensemble import RandomForestClassifier
from mrex.metrics import plot_roc_curve
from mrex.datasets import load_wine
from mrex.model_selection import train_test_split

X, y = load_wine(return_X_y=True)
y = y == 2

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
svc = SVC(random_state=42)
svc.fit(X_train, y_train)

##############################################################################
# Plotting the ROC Curve
# ----------------------
# Next, we plot the ROC curve with a single call to
# :func:`mrex.metrics.plot_roc_curve`. The returned `svc_disp` object allows
# us to continue using the already computed ROC curve for the SVC in future
# plots.
svc_disp = plot_roc_curve(svc, X_test, y_test)
plt.show()

##############################################################################
# Training a Random Forest and Plotting the ROC Curve
# --------------------------------------------------------
# We train a random forest classifier and create a plot comparing it to the SVC