Exemplo n.º 1
0
print ("Symmetry:", si.wfnsym)

print (("\nIn this example, the triplet eigenvector is determined by symmetry\n"
          "to within phase factors because I only have 1 triplet in this\n"
          "space. This also means that the triplet natural orbitals are still\n"
          "localized and the interfragment entanglement is second-order, only\n"
          "appearing in the 2RDM. On the other hand, the singlets do interact\n"
          "leading to first-order entanglement which is visible in the NOs:\n"))
print ("---LASSI eigenvectors---")
print (si)

# You can get the 1-RDMs of the SA-LASSCF states like this
states_casdm1s = las.states_make_casdm1s ()

# You can get the 1- and 2-RDMs of the LASSI solutions like this
roots_casdm1s, roots_casdm2s = lassi.roots_make_rdm12s (las, las.ci, si)

# No super-convenient molden API yet
# By default orbitals are state-averaged natural-orbitals at the end
# of the SA-LASSCF calculation
# But you can recanonicalize
print ("\nlasscf_state_0-3.molden: single LAS state NOs, (strictly) unentangled")
for iroot, dm1 in enumerate (states_casdm1s.sum (1)): # spin sum
    no_coeff, no_ene, no_occ = las.canonicalize (natorb_casdm1=dm1)[:3]
    molden.from_mo (las.mol, 'lasscf_state_{}.molden'.format (iroot),
        no_coeff, occ=no_occ, ene=no_ene)
print ("lassi_root_0-3.molden: LASSI eigenstate NOs, (generally) entangled")
for iroot, dm1 in enumerate (roots_casdm1s.sum (1)): # spin sum
    no_coeff, no_ene, no_occ = las.canonicalize (natorb_casdm1=dm1)[:3]
    molden.from_mo (las.mol, 'lassi_root_{}.molden'.format (iroot),
        no_coeff, occ=no_occ, ene=no_ene)
Exemplo n.º 2
0
las = LASSCF(mf, (4, 4), (4, 4), spin_sub=(1, 1))
las.state_average_(weights=[
    1.0 / 5.0,
] * 5,
                   spins=[[0, 0], [0, 0], [2, -2], [-2, 2], [2, 2]],
                   smults=[[1, 1], [3, 3], [3, 3], [3, 3], [3, 3]])
las.frozen = list(range(las.mo_coeff.shape[-1]))
ugg = las.get_ugg()
las.mo_coeff = np.loadtxt('test_lassi_mo.dat')
las.ci = ugg.unpack(np.loadtxt('test_lassi_ci.dat'))[1]
#las.set (conv_tol_grad=1e-8).run ()
#np.savetxt ('test_lassi_mo.dat', las.mo_coeff)
#np.savetxt ('test_lassi_ci.dat', ugg.pack (las.mo_coeff, las.ci))
las.e_states = las.energy_nuc() + las.states_energy_elec()
e_roots, si = las.lassi()
rdm1s, rdm2s = roots_make_rdm12s(las, las.ci, si)


def tearDownModule():
    global mol, mf, las
    mol.stdout.close()
    del mol, mf, las


class KnownValues(unittest.TestCase):
    def test_evals(self):
        self.assertAlmostEqual(lib.fp(e_roots), 153.47664766268417, 6)

    def test_si(self):
        # Arbitrary signage in both the SI and CI vector, sadly
        # Actually this test seems really inconsistent overall...