Exemplo n.º 1
0
def set_orientation(im, orientation, data_inversion=False, filename=False, fname_out=''):
    """
    Set orientation on image
    :param im: either Image object or file name. Carefully set param filename.
    :param orientation:
    :param data_inversion:
    :param filename:
    :return:
    """

    if fname_out:
        pass
    elif filename:
        path, fname, ext = extract_fname(im)
        fname_out = fname+'_'+orientation+ext
    else:
        fname_out = im.file_name+'_'+orientation+im.ext

    if not data_inversion:
        from sct_utils import run
        if filename:
            run('isct_orientation3d -i '+im+' -orientation '+orientation+' -o '+fname_out, 0)
            im_out = fname_out
        else:
            run('isct_orientation3d -i '+im.absolutepath+' -orientation '+orientation+' -o '+fname_out, 0)
            im_out = Image(fname_out)
    else:
        im_out = im.copy()
        im_out.change_orientation(orientation, True)
        im_out.setFileName(fname_out)
    return im_out
Exemplo n.º 2
0
def clean_labeled_segmentation(fname_labeled_seg, fname_seg, fname_labeled_seg_new):
    """
    Clean labeled segmentation by:
      (i)  removing voxels in segmentation_labeled that are not in segmentation and
      (ii) adding voxels in segmentation that are not in segmentation_labeled
    :param fname_labeled_seg:
    :param fname_seg:
    :param fname_labeled_seg_new: output
    :return: none
    """
    # remove voxels in segmentation_labeled that are not in segmentation
    run('sct_maths -i '+fname_labeled_seg+' -mul '+fname_seg+' -o segmentation_labeled_mul.nii.gz')
    # add voxels in segmentation that are not in segmentation_labeled
    run('sct_maths -i '+fname_labeled_seg+' -dilate 2 -o segmentation_labeled_dilate.nii.gz')  # dilate labeled segmentation
    data_label_dilate = Image('segmentation_labeled_dilate.nii.gz').data
    run('sct_maths -i segmentation_labeled_mul.nii.gz -bin 0 -o segmentation_labeled_mul_bin.nii.gz')
    data_label_bin = Image('segmentation_labeled_mul_bin.nii.gz').data
    data_seg = Image(fname_seg).data
    data_diff = data_seg - data_label_bin
    ind_nonzero = np.where(data_diff)
    im_label = Image('segmentation_labeled_mul.nii.gz')
    for i_vox in range(len(ind_nonzero[0])):
        # assign closest label value for this voxel
        ix, iy, iz = ind_nonzero[0][i_vox], ind_nonzero[1][i_vox], ind_nonzero[2][i_vox]
        im_label.data[ix, iy, iz] = data_label_dilate[ix, iy, iz]
    # save new label file (overwrite)
    im_label.setFileName(fname_labeled_seg_new)
    im_label.save()
Exemplo n.º 3
0
    def crop_from_mask_with_background(self):
        from numpy import asarray, einsum
        image_in = Image(self.input_filename)
        data_array = asarray(image_in.data)
        data_mask = asarray(Image(self.mask).data)
        assert data_array.shape == data_mask.shape

        # Element-wise matrix multiplication:
        new_data = None
        dim = len(data_array.shape)
        if dim == 3:
            new_data = einsum('ijk,ijk->ijk', data_mask, data_array)
        elif dim == 2:
            new_data = einsum('ij,ij->ij', data_mask, data_array)

        if self.background != 0:
            from sct_maths import get_data_or_scalar
            data_background = get_data_or_scalar(str(self.background), data_array)
            data_mask_inv = data_mask.max() - data_mask
            if dim == 3:
                data_background = einsum('ijk,ijk->ijk', data_mask_inv, data_background)
            elif dim == 2:
                data_background = einsum('ij,ij->ij', data_mask_inv, data_background)
            new_data += data_background

        # set image out
        image_in.setFileName(self.output_filename)
        image_in.data = new_data
        image_in.save()
Exemplo n.º 4
0
    def remove_label(self, symmetry=False):
        """
        Compare two label images and remove any labels in input image that are not in reference image.
        The symmetry option enables to remove labels from reference image that are not in input image
        """
        # image_output = Image(self.image_input.dim, orientation=self.image_input.orientation, hdr=self.image_input.hdr, verbose=self.verbose)
        image_output = Image(self.image_input, verbose=self.verbose)
        image_output.data *= 0  # put all voxels to 0

        result_coord_input, result_coord_ref = self.remove_label_coord(self.image_input.getNonZeroCoordinates(coordValue=True),
                                                                       self.image_ref.getNonZeroCoordinates(coordValue=True), symmetry)

        for coord in result_coord_input:
            image_output.data[int(coord.x), int(coord.y), int(coord.z)] = int(round(coord.value))

        if symmetry:
            # image_output_ref = Image(self.image_ref.dim, orientation=self.image_ref.orientation, hdr=self.image_ref.hdr, verbose=self.verbose)
            image_output_ref = Image(self.image_ref, verbose=self.verbose)
            for coord in result_coord_ref:
                image_output_ref.data[int(coord.x), int(coord.y), int(coord.z)] = int(round(coord.value))
            image_output_ref.setFileName(self.fname_output[1])
            image_output_ref.save('minimize_int')

            self.fname_output = self.fname_output[0]

        return image_output
def concat_data(fname_in, fname_out, dim):
    """
    Concatenate data
    :param fname_in: list of file names.
    :param fname_out:
    :param dim: dimension: 0, 1, 2, 3.
    :return: none
    """
    # create empty list
    list_data = []

    # loop across files
    for i in range(len(fname_in)):
        # append data to list
        list_data.append(Image(fname_in[i]).data)

    # expand dimension of all elements in the list if necessary
    if dim > list_data[0].ndim-1:
        list_data = [expand_dims(i, dim) for i in list_data]
    # concatenate
    try:
        data_concat = concatenate(list_data, axis=dim)
    except Exception as e:
        sct.printv('\nERROR: Concatenation on line {}'.format(sys.exc_info()[-1].tb_lineno)+'\n'+str(e)+'\n', 1, 'error')

    # write file
    im = Image(fname_in[0])
    im.data = data_concat
    im.setFileName(fname_out)
    im.save()
Exemplo n.º 6
0
def main(args = None):

    dim_list = ['x', 'y', 'z', 't']

    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])
    fname_in = arguments["-i"]
    fname_out = arguments["-o"]
    verbose = int(arguments['-v'])

    # Build fname_out
    if fname_out == '':
        path_in, file_in, ext_in = extract_fname(fname_in)
        fname_out = path_in+file_in+'_mean'+ext_in

    # Open file.
    nii = Image(fname_in)
    data = nii.data

    # run command
    if '-otsu' in arguments:
        param = arguments['-otsu']
        data_out = otsu(data, param)
    elif '-otsu_adap' in arguments:
        param = arguments['-otsu_adap']
        data_out = otsu_adap(data, param[0], param[1])
    elif '-otsu_median' in arguments:
        param = arguments['-otsu_median']
        data_out = otsu_median(data, param[0], param[1])
    elif '-thr' in arguments:
        param = arguments['-thr']
        data_out = threshold(data, param)
    elif '-percent' in arguments:
        param = arguments['-percent']
        data_out = perc(data, param)
    elif '-mean' in arguments:
        dim = dim_list.index(arguments['-mean'])
        data_out = compute_mean(data, dim)
    elif '-std' in arguments:
        dim = dim_list.index(arguments['-std'])
        data_out = compute_std(data, dim)
    elif '-dilate' in arguments:
        data_out = dilate(data, arguments['-dilate'])
    elif '-erode' in arguments:
        data_out = erode(data, arguments['-dilate'])
    else:
        printv('No process applied.', 1, 'warning')
        return

    # Write output
    nii.data = data_out
    nii.setFileName(fname_out)
    nii.save()

    # display message
    printv('Created file:\n--> '+fname_out+'\n', verbose, 'info')
def savePredictions(predictions, path_output, list_images, segmentation_image_size):
    number_of_images = len(list_images)
    predictions = numpy.reshape(predictions, [number_of_images, segmentation_image_size, segmentation_image_size, NUM_LABELS])
    predictions = predictions[:, :, :, 1]
    for i, pref in enumerate(predictions):
        im_pred = Image(pref)
        im_pred.setFileName(path_output+sct.add_suffix(list_images[i], '_pred'))
        im_pred.save()
Exemplo n.º 8
0
def concat_data(fname_in_list, dim, pixdim=None):
    """
    Concatenate data
    :param im_in_list: list of images.
    :param dim: dimension: 0, 1, 2, 3.
    :param pixdim: pixel resolution to join to image header
    :return im_out: concatenated image
    """
    # WARNING: calling concat_data in python instead of in command line causes a non understood issue (results are different with both options)
    from numpy import concatenate, expand_dims, squeeze

    dat_list = []
    data_concat_list = []

    # check if shape of first image is smaller than asked dim to concatenate along
    data0 = Image(fname_in_list[0]).data
    if len(data0.shape) <= dim:
        expand_dim = True
    else:
        expand_dim = False

    for i, fname in enumerate(fname_in_list):
        # if there is more than 100 images to concatenate, then it does it iteratively to avoid memory issue.
        if i != 0 and i % 100 == 0:
            data_concat_list.append(concatenate(dat_list, axis=dim))
            im = Image(fname)
            dat = im.data
            if expand_dim:
                dat = expand_dims(dat, dim)
            dat_list = [dat]
            del im
            del dat
        else:
            im = Image(fname)
            dat = im.data
            if expand_dim:
                dat = expand_dims(dat, dim)
            dat_list.append(dat)
            del im
            del dat
    if data_concat_list:
        data_concat_list.append(concatenate(dat_list, axis=dim))
        data_concat = concatenate(data_concat_list, axis=dim)
    else:
        data_concat = concatenate(dat_list, axis=dim)
    # write file
    im_out = Image(fname_in_list[0]).copy()
    im_out.data = data_concat
    im_out.setFileName(im_out.file_name+'_concat'+im_out.ext)

    if pixdim is not None:
        im_out.hdr['pixdim'] = pixdim

    return im_out
def set_orientation(fname_in, orientation, fname_out, inversion=False):
    if not inversion:
        sct.run('isct_orientation3d -i '+fname_in+' -orientation '+orientation+' -o '+fname_out, 0)
    else:
        from msct_image import Image
        input_image = Image(fname_in)
        input_image.change_orientation(orientation, True)
        input_image.setFileName(fname_out)
        input_image.save()
    # return full path
    return os.path.abspath(fname_out)
Exemplo n.º 10
0
    def get_im_from_list(self, data):
        im = Image(data)
        # set pix dimension
        im.hdr.structarr['pixdim'][1] = self.param_data.axial_res
        im.hdr.structarr['pixdim'][2] = self.param_data.axial_res
        # set the correct orientation
        im.setFileName('im_to_orient.nii.gz')
        im.save()
        im = set_orientation(im, 'IRP')
        im = set_orientation(im, 'PIL', data_inversion=True)

        return im
def copy_header(fname_src, fname_dest):
    """
    Copy header
    :param fname_src: source file name
    :param fname_dest: destination file name
    :return:
    """
    nii_src = Image(fname_src)
    data_dest = Image(fname_dest).data
    nii_src.setFileName(fname_dest)
    nii_src.data = data_dest
    nii_src.save()
Exemplo n.º 12
0
def convert(fname_in, fname_out, squeeze_data=True, type=None, verbose=1):
    """
    Convert data
    :return True/False
    """
    from msct_image import Image
    from sct_utils import printv
    printv('sct_convert -i '+fname_in+' -o '+fname_out, verbose, 'code')
    # Open file
    im = Image(fname_in)
    # Save file
    im.setFileName(fname_out)
    if type is not None:
        im.changeType(type=type)
    im.save(squeeze_data=squeeze_data)
    return im
def compute_dti(fname_in, fname_bvals, fname_bvecs, prefix):
    """
    Compute DTI.
    :param fname_in: input 4d file.
    :param bvals: bvals txt file
    :param bvecs: bvecs txt file
    :param prefix: output prefix. Example: "dti_"
    :return: True/False
    """
    # Open file.
    from msct_image import Image
    nii = Image(fname_in)
    data = nii.data
    print('data.shape (%d, %d, %d, %d)' % data.shape)

    # open bvecs/bvals
    from dipy.io import read_bvals_bvecs
    bvals, bvecs = read_bvals_bvecs(fname_bvals, fname_bvecs)
    from dipy.core.gradients import gradient_table
    gtab = gradient_table(bvals, bvecs)

    # # mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image.
    # from dipy.segment.mask import median_otsu
    # maskdata, mask = median_otsu(data, 3, 1, True, vol_idx=range(10, 50), dilate=2)
    # print('maskdata.shape (%d, %d, %d, %d)' % maskdata.shape)

    # fit tensor model
    import dipy.reconst.dti as dti
    tenmodel = dti.TensorModel(gtab)
    tenfit = tenmodel.fit(data)

    # Compute metrics
    printv('Computing metrics...', param.verbose)
    # FA
    from dipy.reconst.dti import fractional_anisotropy
    nii.data = fractional_anisotropy(tenfit.evals)
    nii.setFileName(prefix+'FA.nii.gz')
    nii.save('float32')
    # MD
    from dipy.reconst.dti import mean_diffusivity
    nii.data = mean_diffusivity(tenfit.evals)
    nii.setFileName(prefix+'MD.nii.gz')
    nii.save('float32')
    # RD
    from dipy.reconst.dti import radial_diffusivity
    nii.data = radial_diffusivity(tenfit.evals)
    nii.setFileName(prefix+'RD.nii.gz')
    nii.save('float32')
    # AD
    from dipy.reconst.dti import axial_diffusivity
    nii.data = axial_diffusivity(tenfit.evals)
    nii.setFileName(prefix+'AD.nii.gz')
    nii.save('float32')

    return True
def remove_overlap(file_centerline_generated_by_labels, file_with_seg_or_centerline, output_file_name, parameter=0):
    # Image file process
    if parameter == 0 :
        image_with_seg_or_centerline = Image(file_with_seg_or_centerline).copy()
        z_test = ComputeZMinMax(image_with_seg_or_centerline)
        zmax = z_test.Zmax
        zmin = z_test.Zmin

        tab1 = Image(file_centerline_generated_by_labels).copy()
        size_x=tab1.data.shape[0]
        size_y=tab1.data.shape[1]

        #X_coor, Y_coor, Z_coor = (tab1.data).nonzero()
        #nb_one = X_coor.shape[0]
        #for i in range(0, nb_one):
        #    tab1.data[X_coor[i], Y_coor[i], X_coor[i]] = 0

        #each slice under zmax is filled with zeros
        print zmax
        for i in range(zmin, zmax):
            tab1.data[:,:,i] = np.zeros((size_x,size_y))


        #Save file
        tab1.setFileName(output_file_name)
        tab1.save('minimize')   #size of image should be minimized

     # Text file process
    if parameter == 1 :
        z_test = ComputeZMinMax(file_with_seg_or_centerline)
        zmax = z_test.Zmax
        zmin = z_test.Zmin
        print zmax
        #create output txt file
        tab2 = open(output_file_name , "w")
        tab2.close()

        #Delete lines under zmax
        with open(file_centerline_generated_by_labels) as f:
            data_line = f.readlines()
            with open(output_file_name, "w") as f1:
                for line in data_line:
                    words = line.split()
                    if int(words [0]) < zmin or int(words [0]) > zmax :
                        f1.write(line)
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True):
    if fname_grid is None:
        from numpy import zeros

        tmp_dir = sct.tmp_create()
        im_warp = Image(fname_warp)
        os.chdir(tmp_dir)

        assert len(im_warp.data.shape) == 5, "ERROR: Warping field does bot have 5 dimensions..."
        nx, ny, nz, nt, ndimwarp = im_warp.data.shape

        # nx, ny, nz, nt, px, py, pz, pt = im_warp.dim
        # This does not work because dimensions of a warping field are not correctly read : it would be 1,1,1,1,1,1,1,1

        sq = zeros((step, step))
        sq[step - 1] = 1
        sq[:, step - 1] = 1
        dat = zeros((nx, ny, nz))
        for i in range(0, dat.shape[0], step):
            for j in range(0, dat.shape[1], step):
                for k in range(dat.shape[2]):
                    if dat[i : i + step, j : j + step, k].shape == (step, step):
                        dat[i : i + step, j : j + step, k] = sq
        fname_grid = "grid_" + str(step) + ".nii.gz"
        im_grid = Image(param=dat)
        grid_hdr = im_warp.hdr
        im_grid.hdr = grid_hdr
        im_grid.setFileName(fname_grid)
        im_grid.save()
        fname_grid_resample = sct.add_suffix(fname_grid, "_resample")
        sct.run("sct_resample -i " + fname_grid + " -f 3x3x1 -x nn -o " + fname_grid_resample)
        fname_grid = tmp_dir + fname_grid_resample
        os.chdir("..")
    path_warp, file_warp, ext_warp = sct.extract_fname(fname_warp)
    grid_warped = path_warp + "grid_warped_gm" + ext_warp
    sct.run("sct_apply_transfo -i " + fname_grid + " -d " + fname_grid + " -w " + fname_warp + " -o " + grid_warped)
    if rm_tmp:
        sct.run("rm -rf " + tmp_dir, error_exit="warning")
    return grid_warped
Exemplo n.º 16
0
def visualize_warp(fname_warp, fname_grid=None, step=3, rm_tmp=True):
    if fname_grid is None:
        from numpy import zeros
        tmp_dir = tmp_create()
        im_warp = Image(fname_warp)
        status, out = run('fslhd '+fname_warp)
        from os import chdir
        chdir(tmp_dir)
        dim1 = 'dim1           '
        dim2 = 'dim2           '
        dim3 = 'dim3           '
        nx = int(out[out.find(dim1):][len(dim1):out[out.find(dim1):].find('\n')])
        ny = int(out[out.find(dim2):][len(dim2):out[out.find(dim2):].find('\n')])
        nz = int(out[out.find(dim3):][len(dim3):out[out.find(dim3):].find('\n')])
        sq = zeros((step, step))
        sq[step-1] = 1
        sq[:, step-1] = 1
        dat = zeros((nx, ny, nz))
        for i in range(0, dat.shape[0], step):
            for j in range(0, dat.shape[1], step):
                for k in range(dat.shape[2]):
                    if dat[i:i+step, j:j+step, k].shape == (step, step):
                        dat[i:i+step, j:j+step, k] = sq
        fname_grid = 'grid_'+str(step)+'.nii.gz'
        im_grid = Image(param=dat)
        grid_hdr = im_warp.hdr
        im_grid.hdr = grid_hdr
        im_grid.setFileName(fname_grid)
        im_grid.save()
        fname_grid_resample = add_suffix(fname_grid, '_resample')
        run('sct_resample -i '+fname_grid+' -f 3x3x1 -x nn -o '+fname_grid_resample)
        fname_grid = tmp_dir+fname_grid_resample
        chdir('..')
    path_warp, file_warp, ext_warp = extract_fname(fname_warp)
    grid_warped = path_warp+extract_fname(fname_grid)[1]+'_'+file_warp+ext_warp
    run('sct_apply_transfo -i '+fname_grid+' -d '+fname_grid+' -w '+fname_warp+' -o '+grid_warped)
    if rm_tmp:
        run('rm -rf '+tmp_dir, error_exit='warning')
Exemplo n.º 17
0
def create_label_z(fname_seg, z, value):
    """
    Create a label at coordinates x_center, y_center, z
    :param fname_seg: segmentation
    :param z: int
    :return: fname_label
    """
    fname_label = 'labelz.nii.gz'
    nii = Image(fname_seg)
    orientation_origin = nii.change_orientation('RPI')  # change orientation to RPI
    nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
    # find x and y coordinates of the centerline at z using center of mass
    from scipy.ndimage.measurements import center_of_mass
    x, y = center_of_mass(nii.data[:, :, z])
    x, y = int(round(x)), int(round(y))
    nii.data[:, :, :] = 0
    nii.data[x, y, z] = value
    # dilate label to prevent it from disappearing due to nearestneighbor interpolation
    from sct_maths import dilate
    nii.data = dilate(nii.data, [3])
    nii.setFileName(fname_label)
    nii.change_orientation(orientation_origin)  # put back in original orientation
    nii.save()
    return fname_label
Exemplo n.º 18
0
    def crop_with_gui(self):
        import matplotlib.pyplot as plt
        import matplotlib.image as mpimg
        # Initialization
        fname_data = self.input_filename
        suffix_out = '_crop'
        remove_temp_files = self.rm_tmp_files
        verbose = self.verbose

        # Check file existence
        sct.printv('\nCheck file existence...', verbose)
        sct.check_file_exist(fname_data, verbose)

        # Get dimensions of data
        sct.printv('\nGet dimensions of data...', verbose)
        nx, ny, nz, nt, px, py, pz, pt = Image(fname_data).dim
        sct.printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz),
                   verbose)
        # check if 4D data
        if not nt == 1:
            sct.printv(
                '\nERROR in ' + os.path.basename(__file__) +
                ': Data should be 3D.\n', 1, 'error')
            sys.exit(2)

        # print arguments
        print '\nCheck parameters:'
        print '  data ................... ' + fname_data

        # Extract path/file/extension
        path_data, file_data, ext_data = sct.extract_fname(fname_data)
        path_out, file_out, ext_out = '', file_data + suffix_out, ext_data

        # create temporary folder
        path_tmp = 'tmp.' + time.strftime("%y%m%d%H%M%S") + '/'
        sct.run('mkdir ' + path_tmp)

        # copy files into tmp folder
        from sct_convert import convert
        sct.printv('\nCopying input data to tmp folder and convert to nii...',
                   verbose)
        convert(fname_data, path_tmp + 'data.nii')

        # go to tmp folder
        os.chdir(path_tmp)

        # change orientation
        sct.printv('\nChange orientation to RPI...', verbose)
        sct.run('sct_image -i data.nii -setorient RPI -o data_rpi.nii')

        # get image of medial slab
        sct.printv('\nGet image of medial slab...', verbose)
        image_array = nibabel.load('data_rpi.nii').get_data()
        nx, ny, nz = image_array.shape
        scipy.misc.imsave('image.jpg', image_array[math.floor(nx / 2), :, :])

        # Display the image
        sct.printv('\nDisplay image and get cropping region...', verbose)
        fig = plt.figure()
        # fig = plt.gcf()
        # ax = plt.gca()
        ax = fig.add_subplot(111)
        img = mpimg.imread("image.jpg")
        implot = ax.imshow(img.T)
        implot.set_cmap('gray')
        plt.gca().invert_yaxis()
        # mouse callback
        ax.set_title(
            'Left click on the top and bottom of your cropping field.\n Right click to remove last point.\n Close window when your done.'
        )
        line, = ax.plot([], [], 'ro')  # empty line
        cropping_coordinates = LineBuilder(line)
        plt.show()
        # disconnect callback
        # fig.canvas.mpl_disconnect(line)

        # check if user clicked two times
        if len(cropping_coordinates.xs) != 2:
            sct.printv(
                '\nERROR: You have to select two points. Exit program.\n', 1,
                'error')
            sys.exit(2)

        # convert coordinates to integer
        zcrop = [int(i) for i in cropping_coordinates.ys]

        # sort coordinates
        zcrop.sort()

        # crop image
        sct.printv('\nCrop image...', verbose)
        nii = Image('data_rpi.nii')
        data_crop = nii.data[:, :, zcrop[0]:zcrop[1]]
        nii.data = data_crop
        nii.setFileName('data_rpi_crop.nii')
        nii.save()

        # come back to parent folder
        os.chdir('..')

        sct.printv('\nGenerate output files...', verbose)
        sct.generate_output_file(path_tmp + 'data_rpi_crop.nii',
                                 path_out + file_out + ext_out)

        # Remove temporary files
        if remove_temp_files == 1:
            print('\nRemove temporary files...')
            sct.run('rm -rf ' + path_tmp)

        # to view results
        print '\nDone! To view results, type:'
        print 'fslview ' + path_out + file_out + ext_out + ' &'
        print
Exemplo n.º 19
0
def main(args=None):

    # Initialization
    # fname_anat = ''
    # fname_centerline = ''
    sigma = 3 # default value of the standard deviation for the Gaussian smoothing (in terms of number of voxels)
    # remove_temp_files = param.remove_temp_files
    # verbose = param.verbose
    start_time = time.time()

    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_anat = arguments['-i']
    fname_centerline = arguments['-s']
    if '-smooth' in arguments:
        sigma = arguments['-smooth']
    if '-r' in arguments:
        remove_temp_files = int(arguments['-r'])
    if '-v' in arguments:
        verbose = int(arguments['-v'])

    # Display arguments
    print '\nCheck input arguments...'
    print '  Volume to smooth .................. ' + fname_anat
    print '  Centerline ........................ ' + fname_centerline
    print '  Sigma (mm) ........................ '+str(sigma)
    print '  Verbose ........................... '+str(verbose)

    # Check that input is 3D:
    from msct_image import Image
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        sct.printv('WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
                   'sct_image -i '+fname_anat+' -split t -o '+fname_anat, verbose, 'warning')
        sct.printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(fname_centerline)

    # create temporary folder
    sct.printv('\nCreate temporary folder...', verbose)
    path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S"), 1)
    sct.run('mkdir '+path_tmp, verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    sct.run('cp '+fname_anat+' '+path_tmp+'anat'+ext_anat, verbose)
    sct.run('cp '+fname_centerline+' '+path_tmp+'centerline'+ext_centerline, verbose)

    # go to tmp folder
    os.chdir(path_tmp)

    # convert to nii format
    convert('anat'+ext_anat, 'anat.nii')
    convert('centerline'+ext_centerline, 'centerline.nii')

    # Change orientation of the input image into RPI
    print '\nOrient input volume to RPI orientation...'
    fname_anat_rpi = set_orientation('anat.nii', 'RPI', filename=True)
    move(fname_anat_rpi, 'anat_rpi.nii')
    # Change orientation of the input image into RPI
    print '\nOrient centerline to RPI orientation...'
    fname_centerline_rpi = set_orientation('centerline.nii', 'RPI', filename=True)
    move(fname_centerline_rpi, 'centerline_rpi.nii')

    # Straighten the spinal cord
    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    if os.path.isfile('../warp_curve2straight.nii.gz') and os.path.isfile('../warp_straight2curve.nii.gz') and os.path.isfile('../straight_ref.nii.gz'):
        # if they exist, copy them into current folder
        sct.printv('WARNING: Straightening was already run previously. Copying warping fields...', verbose, 'warning')
        shutil.copy('../warp_curve2straight.nii.gz', 'warp_curve2straight.nii.gz')
        shutil.copy('../warp_straight2curve.nii.gz', 'warp_straight2curve.nii.gz')
        shutil.copy('../straight_ref.nii.gz', 'straight_ref.nii.gz')
        # apply straightening
        sct.run('sct_apply_transfo -i anat_rpi.nii -w warp_curve2straight.nii.gz -d straight_ref.nii.gz -o anat_rpi_straight.nii -x spline', verbose)
    else:
        sct.run('sct_straighten_spinalcord -i anat_rpi.nii -s centerline_rpi.nii -qc 0 -x spline', verbose)

    # Smooth the straightened image along z
    print '\nSmooth the straightened image along z...'
    sct.run('sct_maths -i anat_rpi_straight.nii -smooth 0,0,'+str(sigma)+' -o anat_rpi_straight_smooth.nii', verbose)

    # Apply the reversed warping field to get back the curved spinal cord
    print '\nApply the reversed warping field to get back the curved spinal cord...'
    sct.run('sct_apply_transfo -i anat_rpi_straight_smooth.nii -o anat_rpi_straight_smooth_curved.nii -d anat.nii -w warp_straight2curve.nii.gz -x spline', verbose)

    # replace zeroed voxels by original image (issue #937)
    sct.printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.setFileName('anat_rpi_straight_smooth_curved_nonzero.nii')
    nii_smooth.save()

    # come back to parent folder
    os.chdir('..')

    # Generate output file
    print '\nGenerate output file...'
    sct.generate_output_file(path_tmp+'/anat_rpi_straight_smooth_curved_nonzero.nii', file_anat+'_smooth'+ext_anat)

    # Remove temporary files
    if remove_temp_files == 1:
        print('\nRemove temporary files...')
        sct.run('rm -rf '+path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    print '\nFinished! Elapsed time: '+str(int(round(elapsed_time)))+'s\n'

    # to view results
    sct.printv('Done! To view results, type:', verbose)
    sct.printv('fslview '+file_anat+' '+file_anat+'_smooth &\n', verbose, 'info')
def main(args=None):

    # Initialization
    # fname_anat = ''
    # fname_centerline = ''
    sigma = 3  # default value of the standard deviation for the Gaussian smoothing (in terms of number of voxels)
    # remove_temp_files = param.remove_temp_files
    # verbose = param.verbose
    start_time = time.time()

    parser = get_parser()
    arguments = parser.parse(sys.argv[1:])

    fname_anat = arguments['-i']
    fname_centerline = arguments['-s']
    if '-smooth' in arguments:
        sigma = arguments['-smooth']
    if '-r' in arguments:
        remove_temp_files = int(arguments['-r'])
    if '-v' in arguments:
        verbose = int(arguments['-v'])

    # Display arguments
    print '\nCheck input arguments...'
    print '  Volume to smooth .................. ' + fname_anat
    print '  Centerline ........................ ' + fname_centerline
    print '  Sigma (mm) ........................ ' + str(sigma)
    print '  Verbose ........................... ' + str(verbose)

    # Check that input is 3D:
    from msct_image import Image
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        sct.printv(
            'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
            'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat,
            verbose, 'warning')
        sct.printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = sct.extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = sct.extract_fname(
        fname_centerline)

    # create temporary folder
    sct.printv('\nCreate temporary folder...', verbose)
    path_tmp = sct.slash_at_the_end('tmp.' + time.strftime("%y%m%d%H%M%S"), 1)
    sct.run('mkdir ' + path_tmp, verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...',
               verbose)
    sct.run('cp ' + fname_anat + ' ' + path_tmp + 'anat' + ext_anat, verbose)
    sct.run(
        'cp ' + fname_centerline + ' ' + path_tmp + 'centerline' +
        ext_centerline, verbose)

    # go to tmp folder
    os.chdir(path_tmp)

    # convert to nii format
    convert('anat' + ext_anat, 'anat.nii')
    convert('centerline' + ext_centerline, 'centerline.nii')

    # Change orientation of the input image into RPI
    print '\nOrient input volume to RPI orientation...'
    fname_anat_rpi = set_orientation('anat.nii', 'RPI', filename=True)
    move(fname_anat_rpi, 'anat_rpi.nii')
    # Change orientation of the input image into RPI
    print '\nOrient centerline to RPI orientation...'
    fname_centerline_rpi = set_orientation('centerline.nii',
                                           'RPI',
                                           filename=True)
    move(fname_centerline_rpi, 'centerline_rpi.nii')

    # Straighten the spinal cord
    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...',
               verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    if os.path.isfile('../warp_curve2straight.nii.gz') and os.path.isfile(
            '../warp_straight2curve.nii.gz') and os.path.isfile(
                '../straight_ref.nii.gz'):
        # if they exist, copy them into current folder
        sct.printv(
            'WARNING: Straightening was already run previously. Copying warping fields...',
            verbose, 'warning')
        shutil.copy('../warp_curve2straight.nii.gz',
                    'warp_curve2straight.nii.gz')
        shutil.copy('../warp_straight2curve.nii.gz',
                    'warp_straight2curve.nii.gz')
        shutil.copy('../straight_ref.nii.gz', 'straight_ref.nii.gz')
        # apply straightening
        sct.run(
            'sct_apply_transfo -i anat_rpi.nii -w warp_curve2straight.nii.gz -d straight_ref.nii.gz -o anat_rpi_straight.nii -x spline',
            verbose)
    else:
        sct.run(
            'sct_straighten_spinalcord -i anat_rpi.nii -s centerline_rpi.nii -qc 0 -x spline',
            verbose)

    # Smooth the straightened image along z
    print '\nSmooth the straightened image along z...'
    sct.run(
        'sct_maths -i anat_rpi_straight.nii -smooth 0,0,' + str(sigma) +
        ' -o anat_rpi_straight_smooth.nii', verbose)

    # Apply the reversed warping field to get back the curved spinal cord
    print '\nApply the reversed warping field to get back the curved spinal cord...'
    sct.run(
        'sct_apply_transfo -i anat_rpi_straight_smooth.nii -o anat_rpi_straight_smooth_curved.nii -d anat.nii -w warp_straight2curve.nii.gz -x spline',
        verbose)

    # replace zeroed voxels by original image (issue #937)
    sct.printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.setFileName('anat_rpi_straight_smooth_curved_nonzero.nii')
    nii_smooth.save()

    # come back to parent folder
    os.chdir('..')

    # Generate output file
    print '\nGenerate output file...'
    sct.generate_output_file(
        path_tmp + '/anat_rpi_straight_smooth_curved_nonzero.nii',
        file_anat + '_smooth' + ext_anat)

    # Remove temporary files
    if remove_temp_files == 1:
        print('\nRemove temporary files...')
        sct.run('rm -rf ' + path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    print '\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's\n'

    # to view results
    sct.printv('Done! To view results, type:', verbose)
    sct.printv('fslview ' + file_anat + ' ' + file_anat + '_smooth &\n',
               verbose, 'info')
Exemplo n.º 21
0
def main(args=None):

    dim_list = ['x', 'y', 'z', 't']

    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = arguments["-i"]
    fname_out = arguments["-o"]
    verbose = int(arguments['-v'])

    # Open file(s)
    im = Image(fname_in)
    data = im.data  # 3d or 4d numpy array
    dim = im.dim

    # run command
    if '-otsu' in arguments:
        param = arguments['-otsu']
        data_out = otsu(data, param)

    elif '-otsu_adap' in arguments:
        param = arguments['-otsu_adap']
        data_out = otsu_adap(data, param[0], param[1])

    elif '-otsu_median' in arguments:
        param = arguments['-otsu_median']
        data_out = otsu_median(data, param[0], param[1])

    elif '-thr' in arguments:
        param = arguments['-thr']
        data_out = threshold(data, param)

    elif '-percent' in arguments:
        param = arguments['-percent']
        data_out = perc(data, param)

    elif '-bin' in arguments:
        bin_thr = arguments['-bin']
        data_out = binarise(data, bin_thr=bin_thr)

    elif '-add' in arguments:
        from numpy import sum
        data2 = get_data_or_scalar(arguments["-add"], data)
        data_concat = concatenate_along_4th_dimension(data, data2)
        data_out = sum(data_concat, axis=3)

    elif '-sub' in arguments:
        data2 = get_data_or_scalar(arguments['-sub'], data)
        data_out = data - data2

    elif "-laplacian" in arguments:
        sigmas = arguments["-laplacian"]
        if len(sigmas) == 1:
            sigmas = [sigmas for i in range(len(data.shape))]
        elif len(sigmas) != len(data.shape):
            printv(
                parser.usage.generate(
                    error=
                    'ERROR: -laplacian need the same number of inputs as the number of image dimension OR only one input'
                ))
        # adjust sigma based on voxel size
        sigmas = [sigmas[i] / dim[i + 4] for i in range(3)]
        # smooth data
        data_out = laplacian(data, sigmas)

    elif '-mul' in arguments:
        from numpy import prod
        data2 = get_data_or_scalar(arguments["-mul"], data)
        data_concat = concatenate_along_4th_dimension(data, data2)
        data_out = prod(data_concat, axis=3)

    elif '-div' in arguments:
        from numpy import divide
        data2 = get_data_or_scalar(arguments["-div"], data)
        data_out = divide(data, data2)

    elif '-mean' in arguments:
        from numpy import mean
        dim = dim_list.index(arguments['-mean'])
        if dim + 1 > len(
                np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = mean(data, dim)

    elif '-rms' in arguments:
        from numpy import mean, sqrt, square
        dim = dim_list.index(arguments['-rms'])
        if dim + 1 > len(
                np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = sqrt(mean(square(data.astype(float)), dim))

    elif '-std' in arguments:
        from numpy import std
        dim = dim_list.index(arguments['-std'])
        if dim + 1 > len(
                np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = std(data, dim)

    elif "-smooth" in arguments:
        sigmas = arguments["-smooth"]
        if len(sigmas) == 1:
            sigmas = [sigmas[0] for i in range(len(data.shape))]
        elif len(sigmas) != len(data.shape):
            printv(
                parser.usage.generate(
                    error=
                    'ERROR: -smooth need the same number of inputs as the number of image dimension OR only one input'
                ))
        # adjust sigma based on voxel size
        sigmas = [sigmas[i] / dim[i + 4] for i in range(3)]
        # smooth data
        data_out = smooth(data, sigmas)

    elif '-dilate' in arguments:
        data_out = dilate(data, arguments['-dilate'])

    elif '-erode' in arguments:
        data_out = erode(data, arguments['-erode'])

    elif '-denoise' in arguments:
        # parse denoising arguments
        p, b = 1, 5  # default arguments
        list_denoise = arguments['-denoise']
        for i in list_denoise:
            if 'p' in i:
                p = int(i.split('=')[1])
            if 'b' in i:
                b = int(i.split('=')[1])
        data_out = denoise_nlmeans(data, patch_radius=p, block_radius=b)

    elif '-symmetrize' in arguments:
        data_out = (data +
                    data[range(data.shape[0] - 1, -1, -1), :, :]) / float(2)

    elif '-mi' in arguments:
        # input 1 = from flag -i --> im
        # input 2 = from flag -mi
        im_2 = Image(arguments['-mi'])
        compute_similarity(im.data,
                           im_2.data,
                           fname_out,
                           metric='mi',
                           verbose=verbose)
        data_out = None

    elif '-minorm' in arguments:
        im_2 = Image(arguments['-minorm'])
        compute_similarity(im.data,
                           im_2.data,
                           fname_out,
                           metric='minorm',
                           verbose=verbose)
        data_out = None

    elif '-corr' in arguments:
        # input 1 = from flag -i --> im
        # input 2 = from flag -mi
        im_2 = Image(arguments['-corr'])
        compute_similarity(im.data,
                           im_2.data,
                           fname_out,
                           metric='corr',
                           verbose=verbose)
        data_out = None

    # if no flag is set
    else:
        data_out = None
        printv(
            parser.usage.generate(
                error=
                'ERROR: you need to specify an operation to do on the input image'
            ))

    if data_out is not None:
        # Write output
        nii_out = Image(fname_in)  # use header of input file
        nii_out.data = data_out
        nii_out.setFileName(fname_out)
        nii_out.save()
    # TODO: case of multiple outputs
    # assert len(data_out) == n_out
    # if n_in == n_out:
    #     for im_in, d_out, fn_out in zip(nii, data_out, fname_out):
    #         im_in.data = d_out
    #         im_in.setFileName(fn_out)
    #         if "-w" in arguments:
    #             im_in.hdr.set_intent('vector', (), '')
    #         im_in.save()
    # elif n_out == 1:
    #     nii[0].data = data_out[0]
    #     nii[0].setFileName(fname_out[0])
    #     if "-w" in arguments:
    #             nii[0].hdr.set_intent('vector', (), '')
    #     nii[0].save()
    # elif n_out > n_in:
    #     for dat_out, name_out in zip(data_out, fname_out):
    #         im_out = nii[0].copy()
    #         im_out.data = dat_out
    #         im_out.setFileName(name_out)
    #         if "-w" in arguments:
    #             im_out.hdr.set_intent('vector', (), '')
    #         im_out.save()
    # else:
    #     printv(parser.usage.generate(error='ERROR: not the correct numbers of inputs and outputs'))

    # display message
    if data_out is not None:
        printv('\nDone! To view results, type:', verbose)
        printv('fslview ' + fname_out + ' &\n', verbose, 'info')
    else:
        printv('\nDone! File created: ' + fname_out, verbose, 'info')
def main():
    parser = get_parser()
    param = Param()

    arguments = parser.parse(sys.argv[1:])

    # get arguments
    fname_data = arguments['-i']
    fname_seg = arguments['-s']
    fname_landmarks = arguments['-l']
    if '-ofolder' in arguments:
        path_output = arguments['-ofolder']
    else:
        path_output = ''
    path_template = sct.slash_at_the_end(arguments['-t'], 1)
    contrast_template = arguments['-c']
    remove_temp_files = int(arguments['-r'])
    verbose = int(arguments['-v'])
    if '-param-straighten' in arguments:
        param.param_straighten = arguments['-param-straighten']
    if 'cpu-nb' in arguments:
        arg_cpu = ' -cpu-nb '+arguments['-cpu-nb']
    else:
        arg_cpu = ''
    if '-param' in arguments:
        paramreg_user = arguments['-param']
        # update registration parameters
        for paramStep in paramreg_user:
            paramreg.addStep(paramStep)

    # initialize other parameters
    file_template_label = param.file_template_label
    output_type = param.output_type
    zsubsample = param.zsubsample
    # smoothing_sigma = param.smoothing_sigma

    # capitalize letters for contrast
    if contrast_template == 't1':
        contrast_template = 'T1'
    elif contrast_template == 't2':
        contrast_template = 'T2'

    # retrieve file_template based on contrast
    fname_template_list = glob(path_template+param.folder_template+'*'+contrast_template+'.nii.gz')
    # TODO: make sure there is only one file -- check if file is there otherwise it crashes
    fname_template = fname_template_list[0]

    # retrieve file_template_seg
    fname_template_seg_list = glob(path_template+param.folder_template+'*cord.nii.gz')
    # TODO: make sure there is only one file
    fname_template_seg = fname_template_seg_list[0]

    # start timer
    start_time = time.time()

    # get absolute path - TO DO: remove! NEVER USE ABSOLUTE PATH...
    path_template = os.path.abspath(path_template+param.folder_template)

    # get fname of the template + template objects
    # fname_template = sct.slash_at_the_end(path_template, 1)+file_template
    fname_template_label = sct.slash_at_the_end(path_template, 1)+file_template_label
    # fname_template_seg = sct.slash_at_the_end(path_template, 1)+file_template_seg

    # check file existence
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_label, verbose)
    sct.check_file_exist(fname_template_seg, verbose)

    # print arguments
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('.. Data:                 '+fname_data, verbose)
    sct.printv('.. Landmarks:            '+fname_landmarks, verbose)
    sct.printv('.. Segmentation:         '+fname_seg, verbose)
    sct.printv('.. Path template:        '+path_template, verbose)
    sct.printv('.. Path output:          '+path_output, verbose)
    sct.printv('.. Output type:          '+str(output_type), verbose)
    sct.printv('.. Remove temp files:    '+str(remove_temp_files), verbose)

    sct.printv('\nParameters for registration:')
    for pStep in range(1, len(paramreg.steps)+1):
        sct.printv('Step #'+paramreg.steps[str(pStep)].step, verbose)
        sct.printv('.. Type #'+paramreg.steps[str(pStep)].type, verbose)
        sct.printv('.. Algorithm................ '+paramreg.steps[str(pStep)].algo, verbose)
        sct.printv('.. Metric................... '+paramreg.steps[str(pStep)].metric, verbose)
        sct.printv('.. Number of iterations..... '+paramreg.steps[str(pStep)].iter, verbose)
        sct.printv('.. Shrink factor............ '+paramreg.steps[str(pStep)].shrink, verbose)
        sct.printv('.. Smoothing factor......... '+paramreg.steps[str(pStep)].smooth, verbose)
        sct.printv('.. Gradient step............ '+paramreg.steps[str(pStep)].gradStep, verbose)
        sct.printv('.. Degree of polynomial..... '+paramreg.steps[str(pStep)].poly, verbose)

    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    sct.printv('\nCheck input labels...')
    # check if label image contains coherent labels
    image_label = Image(fname_landmarks)
    # -> all labels must be different
    labels = image_label.getNonZeroCoordinates(sorting='value')
    hasDifferentLabels = True
    for lab in labels:
        for otherlabel in labels:
            if lab != otherlabel and lab.hasEqualValue(otherlabel):
                hasDifferentLabels = False
                break
    if not hasDifferentLabels:
        sct.printv('ERROR: Wrong landmarks input. All labels must be different.', verbose, 'error')
    # all labels must be available in tempalte
    image_label_template = Image(fname_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv('ERROR: Wrong landmarks input. Labels must have correspondence in template space. \nLabel max '
                   'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' +
                   str(labels_template[-1].value), verbose, 'error')

    # create temporary folder
    path_tmp = sct.tmp_create(verbose=verbose)

    # set temporary file names
    ftmp_data = 'data.nii'
    ftmp_seg = 'seg.nii.gz'
    ftmp_label = 'label.nii.gz'
    ftmp_template = 'template.nii'
    ftmp_template_seg = 'template_seg.nii.gz'
    ftmp_template_label = 'template_label.nii.gz'

    # copy files to temporary folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    sct.run('sct_convert -i '+fname_data+' -o '+path_tmp+ftmp_data)
    sct.run('sct_convert -i '+fname_seg+' -o '+path_tmp+ftmp_seg)
    sct.run('sct_convert -i '+fname_landmarks+' -o '+path_tmp+ftmp_label)
    sct.run('sct_convert -i '+fname_template+' -o '+path_tmp+ftmp_template)
    sct.run('sct_convert -i '+fname_template_seg+' -o '+path_tmp+ftmp_template_seg)
    sct.run('sct_convert -i '+fname_template_label+' -o '+path_tmp+ftmp_template_label)

    # go to tmp folder
    os.chdir(path_tmp)

    # smooth segmentation (jcohenadad, issue #613)
    sct.printv('\nSmooth segmentation...', verbose)
    sct.run('sct_maths -i '+ftmp_seg+' -smooth 1.5 -o '+add_suffix(ftmp_seg, '_smooth'))
    ftmp_seg = add_suffix(ftmp_seg, '_smooth')

    # resample data to 1mm isotropic
    sct.printv('\nResample data to 1mm isotropic...', verbose)
    sct.run('sct_resample -i '+ftmp_data+' -mm 1.0x1.0x1.0 -x linear -o '+add_suffix(ftmp_data, '_1mm'))
    ftmp_data = add_suffix(ftmp_data, '_1mm')
    sct.run('sct_resample -i '+ftmp_seg+' -mm 1.0x1.0x1.0 -x linear -o '+add_suffix(ftmp_seg, '_1mm'))
    ftmp_seg = add_suffix(ftmp_seg, '_1mm')
    # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling with neighrest neighbour can make them disappear. Therefore a more clever approach is required.
    resample_labels(ftmp_label, ftmp_data, add_suffix(ftmp_label, '_1mm'))
    ftmp_label = add_suffix(ftmp_label, '_1mm')

    # Change orientation of input images to RPI
    sct.printv('\nChange orientation of input images to RPI...', verbose)
    sct.run('sct_image -i '+ftmp_data+' -setorient RPI -o '+add_suffix(ftmp_data, '_rpi'))
    ftmp_data = add_suffix(ftmp_data, '_rpi')
    sct.run('sct_image -i '+ftmp_seg+' -setorient RPI -o '+add_suffix(ftmp_seg, '_rpi'))
    ftmp_seg = add_suffix(ftmp_seg, '_rpi')
    sct.run('sct_image -i '+ftmp_label+' -setorient RPI -o '+add_suffix(ftmp_label, '_rpi'))
    ftmp_label = add_suffix(ftmp_label, '_rpi')

    # get landmarks in native space
    # crop segmentation
    # output: segmentation_rpi_crop.nii.gz
    status_crop, output_crop = sct.run('sct_crop_image -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_crop')+' -dim 2 -bzmax', verbose)
    ftmp_seg = add_suffix(ftmp_seg, '_crop')
    cropping_slices = output_crop.split('Dimension 2: ')[1].split('\n')[0].split(' ')

    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)
    sct.run('sct_straighten_spinalcord -i '+ftmp_seg+' -s '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_straight')+' -qc 0 -r 0 -v '+str(verbose)+' '+param.param_straighten+arg_cpu, verbose)
    # N.B. DO NOT UPDATE VARIABLE ftmp_seg BECAUSE TEMPORARY USED LATER
    # re-define warping field using non-cropped space (to avoid issue #367)
    sct.run('sct_concat_transfo -w warp_straight2curve.nii.gz -d '+ftmp_data+' -o warp_straight2curve.nii.gz')

    # Label preparation:
    # --------------------------------------------------------------------------------
    # Remove unused label on template. Keep only label present in the input label image
    sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
    sct.run('sct_label_utils -p remove -i '+ftmp_template_label+' -o '+ftmp_template_label+' -r '+ftmp_label)

    # Dilating the input label so they can be straighten without losing them
    sct.printv('\nDilating input labels using 3vox ball radius')
    sct.run('sct_maths -i '+ftmp_label+' -o '+add_suffix(ftmp_label, '_dilate')+' -dilate 3')
    ftmp_label = add_suffix(ftmp_label, '_dilate')

    # Apply straightening to labels
    sct.printv('\nApply straightening to labels...', verbose)
    sct.run('sct_apply_transfo -i '+ftmp_label+' -o '+add_suffix(ftmp_label, '_straight')+' -d '+add_suffix(ftmp_seg, '_straight')+' -w warp_curve2straight.nii.gz -x nn')
    ftmp_label = add_suffix(ftmp_label, '_straight')

    # Create crosses for the template labels and get coordinates
    sct.printv('\nCreate a 15 mm cross for the template labels...', verbose)
    template_image = Image(ftmp_template_label)
    coordinates_input = template_image.getNonZeroCoordinates(sorting='value')
    # jcohenadad, issue #628 <<<<<
    # landmark_template = ProcessLabels.get_crosses_coordinates(coordinates_input, gapxy=15)
    landmark_template = coordinates_input
    # >>>>>
    if verbose == 2:
        # TODO: assign cross to image before saving
        template_image.setFileName(add_suffix(ftmp_template_label, '_cross'))
        template_image.save(type='minimize_int')

    # Create crosses for the input labels into straight space and get coordinates
    sct.printv('\nCreate a 15 mm cross for the input labels...', verbose)
    label_straight_image = Image(ftmp_label)
    coordinates_input = label_straight_image.getCoordinatesAveragedByValue()  # landmarks are sorted by value
    # jcohenadad, issue #628 <<<<<
    # landmark_straight = ProcessLabels.get_crosses_coordinates(coordinates_input, gapxy=15)
    landmark_straight = coordinates_input
    # >>>>>
    if verbose == 2:
        # TODO: assign cross to image before saving
        label_straight_image.setFileName(add_suffix(ftmp_label, '_cross'))
        label_straight_image.save(type='minimize_int')

    # Reorganize landmarks
    points_fixed, points_moving = [], []
    for coord in landmark_straight:
        point_straight = label_straight_image.transfo_pix2phys([[coord.x, coord.y, coord.z]])
        points_moving.append([point_straight[0][0], point_straight[0][1], point_straight[0][2]])

    for coord in landmark_template:
        point_template = template_image.transfo_pix2phys([[coord.x, coord.y, coord.z]])
        points_fixed.append([point_template[0][0], point_template[0][1], point_template[0][2]])

    # Register curved landmarks on straight landmarks based on python implementation
    sct.printv('\nComputing rigid transformation (algo=translation-scaling-z) ...', verbose)

    import msct_register_landmarks
    # for some reason, the moving and fixed points are inverted between ITK transform and our python-based transform.
    # and for another unknown reason, x and y dimensions have a negative sign (at least for translation and center of rotation).
    if verbose == 2:
        show_transfo = True
    else:
        show_transfo = False
    (rotation_matrix, translation_array, points_moving_reg, points_moving_barycenter) = msct_register_landmarks.getRigidTransformFromLandmarks(points_moving, points_fixed, constraints='translation-scaling-z', show=show_transfo)
    # writing rigid transformation file
    text_file = open("straight2templateAffine.txt", "w")
    text_file.write("#Insight Transform File V1.0\n")
    text_file.write("#Transform 0\n")
    text_file.write("Transform: AffineTransform_double_3_3\n")
    text_file.write("Parameters: %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f\n" % (
        rotation_matrix[0, 0], rotation_matrix[0, 1], rotation_matrix[0, 2],
        rotation_matrix[1, 0], rotation_matrix[1, 1], rotation_matrix[1, 2],
        rotation_matrix[2, 0], rotation_matrix[2, 1], rotation_matrix[2, 2],
        -translation_array[0, 0], -translation_array[0, 1], translation_array[0, 2]))
    text_file.write("FixedParameters: %.9f %.9f %.9f\n" % (-points_moving_barycenter[0],
                                                           -points_moving_barycenter[1],
                                                           points_moving_barycenter[2]))
    text_file.close()

    # Concatenate transformations: curve --> straight --> affine
    sct.printv('\nConcatenate transformations: curve --> straight --> affine...', verbose)
    sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt -d template.nii -o warp_curve2straightAffine.nii.gz')

    # Apply transformation
    sct.printv('\nApply transformation...', verbose)
    sct.run('sct_apply_transfo -i '+ftmp_data+' -o '+add_suffix(ftmp_data, '_straightAffine')+' -d '+ftmp_template+' -w warp_curve2straightAffine.nii.gz')
    ftmp_data = add_suffix(ftmp_data, '_straightAffine')
    sct.run('sct_apply_transfo -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_straightAffine')+' -d '+ftmp_template+' -w warp_curve2straightAffine.nii.gz -x linear')
    ftmp_seg = add_suffix(ftmp_seg, '_straightAffine')

    # threshold and binarize
    sct.printv('\nBinarize segmentation...', verbose)
    sct.run('sct_maths -i '+ftmp_seg+' -thr 0.4 -o '+add_suffix(ftmp_seg, '_thr'))
    sct.run('sct_maths -i '+add_suffix(ftmp_seg, '_thr')+' -bin -o '+add_suffix(ftmp_seg, '_thr_bin'))
    ftmp_seg = add_suffix(ftmp_seg, '_thr_bin')

    # find min-max of anat2template (for subsequent cropping)
    zmin_template, zmax_template = find_zmin_zmax(ftmp_seg)

    # crop template in z-direction (for faster processing)
    sct.printv('\nCrop data in template space (for faster processing)...', verbose)
    sct.run('sct_crop_image -i '+ftmp_template+' -o '+add_suffix(ftmp_template, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_template = add_suffix(ftmp_template, '_crop')
    sct.run('sct_crop_image -i '+ftmp_template_seg+' -o '+add_suffix(ftmp_template_seg, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_template_seg = add_suffix(ftmp_template_seg, '_crop')
    sct.run('sct_crop_image -i '+ftmp_data+' -o '+add_suffix(ftmp_data, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_data = add_suffix(ftmp_data, '_crop')
    sct.run('sct_crop_image -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_crop')+' -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    ftmp_seg = add_suffix(ftmp_seg, '_crop')

    # sub-sample in z-direction
    sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose)
    sct.run('sct_resample -i '+ftmp_template+' -o '+add_suffix(ftmp_template, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_template = add_suffix(ftmp_template, '_sub')
    sct.run('sct_resample -i '+ftmp_template_seg+' -o '+add_suffix(ftmp_template_seg, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_template_seg = add_suffix(ftmp_template_seg, '_sub')
    sct.run('sct_resample -i '+ftmp_data+' -o '+add_suffix(ftmp_data, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_data = add_suffix(ftmp_data, '_sub')
    sct.run('sct_resample -i '+ftmp_seg+' -o '+add_suffix(ftmp_seg, '_sub')+' -f 1x1x'+zsubsample, verbose)
    ftmp_seg = add_suffix(ftmp_seg, '_sub')

    # Registration straight spinal cord to template
    sct.printv('\nRegister straight spinal cord to template...', verbose)

    # loop across registration steps
    warp_forward = []
    warp_inverse = []
    for i_step in range(1, len(paramreg.steps)+1):
        sct.printv('\nEstimate transformation for step #'+str(i_step)+'...', verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = ftmp_data
            dest = ftmp_template
            interp_step = 'linear'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = ftmp_seg
            dest = ftmp_template_seg
            interp_step = 'nn'
        else:
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>1, apply warp_forward_concat to the src image to be used
        if i_step > 1:
            # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            src = add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
        warp_forward.append(warp_forward_out)
        warp_inverse.append(warp_inverse_out)

    # Concatenate transformations:
    sct.printv('\nConcatenate transformations: anat --> template...', verbose)
    sct.run('sct_concat_transfo -w warp_curve2straightAffine.nii.gz,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    sct.printv('\nConcatenate transformations: template --> anat...', verbose)
    warp_inverse.reverse()
    sct.run('sct_concat_transfo -w '+','.join(warp_inverse)+',-straight2templateAffine.txt,warp_straight2curve.nii.gz -d data.nii -o warp_template2anat.nii.gz', verbose)

    # Apply warping fields to anat and template
    if output_type == 1:
        sct.run('sct_apply_transfo -i template.nii -o template2anat.nii.gz -d data.nii -w warp_template2anat.nii.gz -crop 1', verbose)
        sct.run('sct_apply_transfo -i data.nii -o anat2template.nii.gz -d template.nii -w warp_anat2template.nii.gz -crop 1', verbose)

    # come back to parent folder
    os.chdir('..')

   # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp+'warp_template2anat.nii.gz', path_output+'warp_template2anat.nii.gz', verbose)
    sct.generate_output_file(path_tmp+'warp_anat2template.nii.gz', path_output+'warp_anat2template.nii.gz', verbose)
    if output_type == 1:
        sct.generate_output_file(path_tmp+'template2anat.nii.gz', path_output+'template2anat'+ext_data, verbose)
        sct.generate_output_file(path_tmp+'anat2template.nii.gz', path_output+'anat2template'+ext_data, verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.run('rm -rf '+path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: '+str(int(round(elapsed_time)))+'s', verbose)

    # to view results
    sct.printv('\nTo view results, type:', verbose)
    sct.printv('fslview '+fname_data+' '+path_output+'template2anat -b 0,4000 &', verbose, 'info')
    sct.printv('fslview '+fname_template+' -b 0,5000 '+path_output+'anat2template &\n', verbose, 'info')
Exemplo n.º 23
0
def main():
    # Initialization
    fname_data = ''
    suffix_out = '_crop'
    remove_temp_files = param.remove_temp_files
    verbose = param.verbose
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; ' # for faster processing, all outputs are in NIFTI
    remove_temp_files = param.remove_temp_files
    
    # Parameters for debug mode
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        fname_data = path_sct+'/testing/data/errsm_23/t2/t2.nii.gz'
        remove_temp_files = 0
    else:
        # Check input parameters
        try:
            opts, args = getopt.getopt(sys.argv[1:],'hi:r:v:')
        except getopt.GetoptError:
            usage()
        if not opts:
            usage()
        for opt, arg in opts:
            if opt == '-h':
                usage()
            elif opt in ('-i'):
                fname_data = arg
            elif opt in ('-r'):
                remove_temp_files = int(arg)
            elif opt in ('-v'):
                verbose = int(arg)

    # display usage if a mandatory argument is not provided
    if fname_data == '':
        usage()

    # Check file existence
    sct.printv('\nCheck file existence...', verbose)
    sct.check_file_exist(fname_data, verbose)

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_data).dim
    sct.printv('.. '+str(nx)+' x '+str(ny)+' x '+str(nz), verbose)
    # check if 4D data
    if not nt == 1:
        sct.printv('\nERROR in '+os.path.basename(__file__)+': Data should be 3D.\n', 1, 'error')
        sys.exit(2)

    # print arguments
    print '\nCheck parameters:'
    print '  data ................... '+fname_data
    print

    # Extract path/file/extension
    path_data, file_data, ext_data = sct.extract_fname(fname_data)
    path_out, file_out, ext_out = '', file_data+suffix_out, ext_data

    # create temporary folder
    path_tmp = 'tmp.'+time.strftime("%y%m%d%H%M%S")+'/'
    sct.run('mkdir '+path_tmp)

    # copy files into tmp folder
    sct.run('isct_c3d '+fname_data+' -o '+path_tmp+'data.nii')

    # go to tmp folder
    os.chdir(path_tmp)

    # change orientation
    sct.printv('\nChange orientation to RPI...', verbose)
    set_orientation('data.nii', 'RPI', 'data_rpi.nii')

    # get image of medial slab
    sct.printv('\nGet image of medial slab...', verbose)
    image_array = nibabel.load('data_rpi.nii').get_data()
    nx, ny, nz = image_array.shape
    scipy.misc.imsave('image.jpg', image_array[math.floor(nx/2), :, :])

    # Display the image
    sct.printv('\nDisplay image and get cropping region...', verbose)
    fig = plt.figure()
    # fig = plt.gcf()
    # ax = plt.gca()
    ax = fig.add_subplot(111)
    img = mpimg.imread("image.jpg")
    implot = ax.imshow(img.T)
    implot.set_cmap('gray')
    plt.gca().invert_yaxis()
    # mouse callback
    ax.set_title('Left click on the top and bottom of your cropping field.\n Right click to remove last point.\n Close window when your done.')
    line, = ax.plot([], [], 'ro')  # empty line
    cropping_coordinates = LineBuilder(line)
    plt.show()
    # disconnect callback
    # fig.canvas.mpl_disconnect(line)

    # check if user clicked two times
    if len(cropping_coordinates.xs) != 2:
        sct.printv('\nERROR: You have to select two points. Exit program.\n', 1, 'error')
        sys.exit(2)

    # convert coordinates to integer
    zcrop = [int(i) for i in cropping_coordinates.ys]

    # sort coordinates
    zcrop.sort()

    # crop image
    sct.printv('\nCrop image...', verbose)
    nii = Image('data_rpi.nii')
    data_crop = nii.data[:, :, zcrop[0]:zcrop[1]]
    nii.data = data_crop
    nii.setFileName('data_rpi_crop.nii')
    nii.save()

    # come back to parent folder
    os.chdir('..')

    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp+'data_rpi_crop.nii', path_out+file_out+ext_out)

    # Remove temporary files
    if remove_temp_files == 1:
        print('\nRemove temporary files...')
        sct.run('rm -rf '+path_tmp)

    # to view results
    print '\nDone! To view results, type:'
    print 'fslview '+path_out+file_out+ext_out+' &'
    print
    def validation(self, fname_manual_gmseg, fname_sc_seg):
        path_manual_gmseg, file_manual_gmseg, ext_manual_gmseg = sct.extract_fname(
            fname_manual_gmseg)
        path_sc_seg, file_sc_seg, ext_sc_seg = sct.extract_fname(fname_sc_seg)

        # Create tmp folder and copy files in it
        tmp_dir = sct.tmp_create()
        sct.run('cp ' + fname_manual_gmseg + ' ' + tmp_dir +
                file_manual_gmseg + ext_manual_gmseg)
        sct.run('cp ' + fname_sc_seg + ' ' + tmp_dir + file_sc_seg +
                ext_sc_seg)
        sct.run('cp ' + self.param.output_folder +
                self.fname_warp_template2gm + ' ' + tmp_dir +
                self.fname_warp_template2gm)
        os.chdir(tmp_dir)

        sct.run('sct_warp_template -d ' + fname_manual_gmseg + ' -w ' +
                self.fname_warp_template2gm + ' -qc 0 -a 0')
        if 'MNI-Poly-AMU_GM.nii.gz' in os.listdir('label/template/'):
            im_new_template_gm = Image('label/template/MNI-Poly-AMU_GM.nii.gz')
            im_new_template_wm = Image('label/template/MNI-Poly-AMU_WM.nii.gz')
        else:
            im_new_template_gm = Image('label/template/PAM50_gm.nii.gz')
            im_new_template_wm = Image('label/template/PAM50_wm.nii.gz')

        im_new_template_gm = thr_im(im_new_template_gm, self.param.thr,
                                    self.param.thr)
        im_new_template_wm = thr_im(im_new_template_wm, self.param.thr,
                                    self.param.thr)

        self.im_template_gm = thr_im(self.im_template_gm, self.param.thr,
                                     self.param.thr)
        self.im_template_wm = thr_im(self.im_template_wm, self.param.thr,
                                     self.param.thr)

        fname_new_template_gm = 'new_template_gm.nii.gz'
        im_new_template_gm.setFileName(fname_new_template_gm)
        im_new_template_gm.save()

        fname_new_template_wm = 'new_template_wm.nii.gz'
        im_new_template_wm.setFileName(fname_new_template_wm)
        im_new_template_wm.save()

        fname_old_template_wm = 'old_template_wm.nii.gz'
        self.im_template_wm.setFileName(fname_old_template_wm)
        self.im_template_wm.save()

        fname_old_template_gm = 'old_template_gm.nii.gz'
        self.im_template_gm.setFileName(fname_old_template_gm)
        self.im_template_gm.save()

        fname_manual_wmseg = 'target_manual_wmseg.nii.gz'
        sct.run('sct_maths -i ' + file_sc_seg + ext_sc_seg + ' -sub ' +
                file_manual_gmseg + ext_manual_gmseg + ' -o ' +
                fname_manual_wmseg)

        # Compute Hausdorff distance
        status, output_old_hd = sct.run('sct_compute_hausdorff_distance -i ' +
                                        fname_old_template_gm + ' -r ' +
                                        file_manual_gmseg + ext_manual_gmseg +
                                        ' -t 1  -v 1')
        status, output_new_hd = sct.run('sct_compute_hausdorff_distance -i ' +
                                        fname_new_template_gm + ' -r ' +
                                        file_manual_gmseg + ext_manual_gmseg +
                                        ' -t 1  -v 1')

        hd_name = 'hd_md_multilabel_reg.txt'
        hd_fic = open(hd_name, 'w')
        hd_fic.write(
            'The "diff" columns are comparisons between regular template registration and corrected template registration according to SC internal structure\n'
            'Diff = metric_regular_reg - metric_corrected_reg\n')
        hd_fic.write('#Slice, HD, HD diff, MD, MD diff\n')

        no_ref_slices = []

        init_hd = "Hausdorff's distance  -  First relative Hausdorff's distance median - Second relative Hausdorff's distance median(all in mm)\n"
        old_gm_hd = output_old_hd[output_old_hd.find(init_hd) +
                                  len(init_hd):].split('\n')
        new_gm_hd = output_new_hd[output_new_hd.find(init_hd) +
                                  len(init_hd):].split('\n')

        for i in range(len(old_gm_hd) - 3):  # last two lines are informations
            i_old, val_old = old_gm_hd[i].split(':')
            i_new, val_new = new_gm_hd[i].split(':')
            i_old = int(i_old[-2:])
            i_new = int(i_new[-2:])

            assert i == i_old == i_new, 'ERROR: when comparing Hausdorff distances, slice numbers differs.'
            hd_old, med1_old, med2_old = val_old.split('-')
            hd_new, med1_new, med2_new = val_new.split('-')

            if float(hd_old) == 0.0:
                no_ref_slices.append(i)
                hd_fic.write(str(i) + ', NO MANUAL SEGMENTATION\n')
            else:
                md_new = max(float(med1_new), float(med2_new))
                md_old = max(float(med1_old), float(med2_old))

                hd_fic.write(
                    str(i) + ', ' + hd_new + ', ' +
                    str(float(hd_old) - float(hd_new)) + ', ' + str(md_new) +
                    ', ' + str(md_old - md_new) + '\n')
        hd_fic.close()

        # Compute Dice coefficient
        # --- DC old template
        try:
            status_old_gm, output_old_gm = sct.run(
                'sct_dice_coefficient -i ' + file_manual_gmseg +
                ext_manual_gmseg + ' -d ' + fname_old_template_gm +
                ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            corrected_manual_gmseg = file_manual_gmseg + '_in_old_template_space' + ext_manual_gmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_old_template_gm + ',' + file_manual_gmseg +
                    ext_manual_gmseg + ',1,16] -o [reg_ref_to_res,' +
                    corrected_manual_gmseg + '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_gmseg+' -thr 0.1 -o '+corrected_manual_gmseg)
            sct.run('sct_maths -i ' + corrected_manual_gmseg +
                    ' -bin 0.1 -o ' + corrected_manual_gmseg)
            status_old_gm, output_old_gm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_gmseg + ' -d ' +
                fname_old_template_gm + '  -2d-slices 2',
                error_exit='warning')

        try:
            status_old_wm, output_old_wm = sct.run(
                'sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' +
                fname_old_template_wm + ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            path_manual_wmseg, file_manual_wmseg, ext_manual_wmseg = sct.extract_fname(
                fname_manual_wmseg)
            corrected_manual_wmseg = file_manual_wmseg + '_in_old_template_space' + ext_manual_wmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_old_template_wm + ',' + fname_manual_wmseg +
                    ',1,16] -o [reg_ref_to_res,' + corrected_manual_wmseg +
                    '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_wmseg+' -thr 0.1 -o '+corrected_manual_wmseg)
            sct.run('sct_maths -i ' + corrected_manual_wmseg +
                    ' -bin 0.1 -o ' + corrected_manual_wmseg)
            status_old_wm, output_old_wm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_wmseg + ' -d ' +
                fname_old_template_wm + '  -2d-slices 2',
                error_exit='warning')

        # --- DC new template
        try:
            status_new_gm, output_new_gm = sct.run(
                'sct_dice_coefficient -i ' + file_manual_gmseg +
                ext_manual_gmseg + ' -d ' + fname_new_template_gm +
                ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            corrected_manual_gmseg = file_manual_gmseg + '_in_new_template_space' + ext_manual_gmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_new_template_gm + ',' + file_manual_gmseg +
                    ext_manual_gmseg + ',1,16] -o [reg_ref_to_res,' +
                    corrected_manual_gmseg + '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_gmseg+' -thr 0.1 -o '+corrected_manual_gmseg)
            sct.run('sct_maths -i ' + corrected_manual_gmseg +
                    ' -bin 0.1 -o ' + corrected_manual_gmseg)
            status_new_gm, output_new_gm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_gmseg + ' -d ' +
                fname_new_template_gm + '  -2d-slices 2',
                error_exit='warning')

        try:
            status_new_wm, output_new_wm = sct.run(
                'sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' +
                fname_new_template_wm + ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            path_manual_wmseg, file_manual_wmseg, ext_manual_wmseg = sct.extract_fname(
                fname_manual_wmseg)
            corrected_manual_wmseg = file_manual_wmseg + '_in_new_template_space' + ext_manual_wmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_new_template_wm + ',' + fname_manual_wmseg +
                    ',1,16] -o [reg_ref_to_res,' + corrected_manual_wmseg +
                    '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_wmseg+' -thr 0.1 -o '+corrected_manual_wmseg)
            sct.run('sct_maths -i ' + corrected_manual_wmseg +
                    ' -bin 0.1 -o ' + corrected_manual_wmseg)
            status_new_wm, output_new_wm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_wmseg + ' -d ' +
                fname_new_template_wm + '  -2d-slices 2',
                error_exit='warning')

        dice_name = 'dice_multilabel_reg.txt'
        dice_fic = open(dice_name, 'w')
        dice_fic.write(
            'The "diff" columns are comparisons between regular template registration and corrected template registration according to SC internal structure\n'
            'Diff = metric_corrected_reg - metric_regular_reg\n')
        dice_fic.write('#Slice, WM DC, WM diff, GM DC, GM diff\n')

        init_dc = '2D Dice coefficient by slice:\n'

        old_gm_dc = output_old_gm[output_old_gm.find(init_dc) +
                                  len(init_dc):].split('\n')
        old_wm_dc = output_old_wm[output_old_wm.find(init_dc) +
                                  len(init_dc):].split('\n')
        new_gm_dc = output_new_gm[output_new_gm.find(init_dc) +
                                  len(init_dc):].split('\n')
        new_wm_dc = output_new_wm[output_new_wm.find(init_dc) +
                                  len(init_dc):].split('\n')

        for i in range(len(old_gm_dc)):
            if i not in no_ref_slices:
                i_new_gm, val_new_gm = new_gm_dc[i].split(' ')
                i_new_wm, val_new_wm = new_wm_dc[i].split(' ')
                i_old_gm, val_old_gm = old_gm_dc[i].split(' ')
                i_old_wm, val_old_wm = old_wm_dc[i].split(' ')

                assert i == int(i_new_gm) == int(i_new_wm) == int(
                    i_old_gm
                ) == int(
                    i_old_wm
                ), 'ERROR: when comparing Dice coefficients, slice numbers differs.'

                dice_fic.write(
                    str(i) + ', ' + val_new_wm + ', ' +
                    str(float(val_new_wm) - float(val_old_wm)) + ', ' +
                    val_new_gm + ', ' +
                    str(float(val_new_gm) - float(val_old_gm)) + '\n')
            else:
                dice_fic.write(str(i) + ', NO MANUAL SEGMENTATION\n')
        dice_fic.close()
        os.chdir('..')

        sct.generate_output_file(tmp_dir + hd_name,
                                 self.param.output_folder + hd_name)
        sct.generate_output_file(tmp_dir + dice_name,
                                 self.param.output_folder + dice_name)

        if self.param.remove_tmp:
            sct.run('rm -rf ' + tmp_dir, error_exit='warning')
Exemplo n.º 25
0
def register(src, dest, paramreg, param, i_step_str):

    # initiate default parameters of antsRegistration transformation
    ants_registration_params = {'rigid': '', 'affine': '', 'compositeaffine': '', 'similarity': '', 'translation': '',
                                'bspline': ',10', 'gaussiandisplacementfield': ',3,0',
                                'bsplinedisplacementfield': ',5,10', 'syn': ',3,0', 'bsplinesyn': ',1,3'}
    output = ''  # default output if problem

    # display arguments
    sct.printv('Registration parameters:', param.verbose)
    sct.printv('  type ........... '+paramreg.steps[i_step_str].type, param.verbose)
    sct.printv('  algo ........... '+paramreg.steps[i_step_str].algo, param.verbose)
    sct.printv('  slicewise ...... '+paramreg.steps[i_step_str].slicewise, param.verbose)
    sct.printv('  metric ......... '+paramreg.steps[i_step_str].metric, param.verbose)
    sct.printv('  iter ........... '+paramreg.steps[i_step_str].iter, param.verbose)
    sct.printv('  smooth ......... '+paramreg.steps[i_step_str].smooth, param.verbose)
    sct.printv('  laplacian ...... '+paramreg.steps[i_step_str].laplacian, param.verbose)
    sct.printv('  shrink ......... '+paramreg.steps[i_step_str].shrink, param.verbose)
    sct.printv('  gradStep ....... '+paramreg.steps[i_step_str].gradStep, param.verbose)
    sct.printv('  init ........... '+paramreg.steps[i_step_str].init, param.verbose)
    sct.printv('  poly ........... '+paramreg.steps[i_step_str].poly, param.verbose)
    sct.printv('  dof ............ '+paramreg.steps[i_step_str].dof, param.verbose)
    sct.printv('  smoothWarpXY ... '+paramreg.steps[i_step_str].smoothWarpXY, param.verbose)

    # set metricSize
    if paramreg.steps[i_step_str].metric == 'MI':
        metricSize = '32'  # corresponds to number of bins
    else:
        metricSize = '4'  # corresponds to radius (for CC, MeanSquares...)

    # set masking
    if param.fname_mask:
        fname_mask = 'mask.nii.gz'
        masking = '-x mask.nii.gz'
    else:
        fname_mask = ''
        masking = ''

    if paramreg.steps[i_step_str].algo == 'slicereg':
        # check if user used type=label
        if paramreg.steps[i_step_str].type == 'label':
            sct.printv('\nERROR: this algo is not compatible with type=label. Please use type=im or type=seg', 1, 'error')
        else:
            from msct_image import find_zmin_zmax
            # threshold images (otherwise, automatic crop does not work -- see issue #293)
            src_th = sct.add_suffix(src, '_th')
            from msct_image import Image
            nii = Image(src)
            data = nii.data
            data[data < 0.1] = 0
            nii.data = data
            nii.setFileName(src_th)
            nii.save()
            # sct.run(fsloutput+'fslmaths '+src+' -thr 0.1 '+src_th, param.verbose)
            dest_th = sct.add_suffix(dest, '_th')
            nii = Image(dest)
            data = nii.data
            data[data < 0.1] = 0
            nii.data = data
            nii.setFileName(dest_th)
            nii.save()
            # sct.run(fsloutput+'fslmaths '+dest+' -thr 0.1 '+dest_th, param.verbose)
            # find zmin and zmax
            zmin_src, zmax_src = find_zmin_zmax(src_th)
            zmin_dest, zmax_dest = find_zmin_zmax(dest_th)
            zmin_total = max([zmin_src, zmin_dest])
            zmax_total = min([zmax_src, zmax_dest])
            # crop data
            src_crop = sct.add_suffix(src, '_crop')
            sct.run('sct_crop_image -i '+src+' -o '+src_crop+' -dim 2 -start '+str(zmin_total)+' -end '+str(zmax_total), param.verbose)
            dest_crop = sct.add_suffix(dest, '_crop')
            sct.run('sct_crop_image -i '+dest+' -o '+dest_crop+' -dim 2 -start '+str(zmin_total)+' -end '+str(zmax_total), param.verbose)
            # update variables
            src = src_crop
            dest = dest_crop
            scr_regStep = sct.add_suffix(src, '_regStep'+i_step_str)
            # estimate transfo
            cmd = ('isct_antsSliceRegularizedRegistration '
                   '-t Translation[0.5] '
                   '-m '+paramreg.steps[i_step_str].metric+'['+dest+','+src+',1,'+metricSize+',Regular,0.2] '
                   '-p '+paramreg.steps[i_step_str].poly+' '
                   '-i '+paramreg.steps[i_step_str].iter+' '
                   '-f 1 '
                   '-s '+paramreg.steps[i_step_str].smooth+' '
                   '-v 1 '  # verbose (verbose=2 does not exist, so we force it to 1)
                   '-o [step'+i_step_str+','+scr_regStep+'] '  # here the warp name is stage10 because antsSliceReg add "Warp"
                   +masking)
            warp_forward_out = 'step'+i_step_str+'Warp.nii.gz'
            warp_inverse_out = 'step'+i_step_str+'InverseWarp.nii.gz'
            # run command
            status, output = sct.run(cmd, param.verbose)

    # ANTS 3d
    elif paramreg.steps[i_step_str].algo.lower() in ants_registration_params and paramreg.steps[i_step_str].slicewise == '0':
        # make sure type!=label. If type==label, this will be addressed later in the code.
        if not paramreg.steps[i_step_str].type == 'label':
            # Pad the destination image (because ants doesn't deform the extremities)
            # N.B. no need to pad if iter = 0
            if not paramreg.steps[i_step_str].iter == '0':
                dest_pad = sct.add_suffix(dest, '_pad')
                sct.run('sct_image -i '+dest+' -o '+dest_pad+' -pad 0,0,'+str(param.padding))
                dest = dest_pad
            # apply Laplacian filter
            if not paramreg.steps[i_step_str].laplacian == '0':
                sct.printv('\nApply Laplacian filter', param.verbose)
                sct.run('sct_maths -i '+src+' -laplacian '+paramreg.steps[i_step_str].laplacian+','+paramreg.steps[i_step_str].laplacian+',0 -o '+sct.add_suffix(src, '_laplacian'))
                sct.run('sct_maths -i '+dest+' -laplacian '+paramreg.steps[i_step_str].laplacian+','+paramreg.steps[i_step_str].laplacian+',0 -o '+sct.add_suffix(dest, '_laplacian'))
                src = sct.add_suffix(src, '_laplacian')
                dest = sct.add_suffix(dest, '_laplacian')
            # Estimate transformation
            sct.printv('\nEstimate transformation', param.verbose)
            scr_regStep = sct.add_suffix(src, '_regStep' + i_step_str)
            cmd = ('isct_antsRegistration '
                   '--dimensionality 3 '
                   '--transform '+paramreg.steps[i_step_str].algo+'['+paramreg.steps[i_step_str].gradStep +
                   ants_registration_params[paramreg.steps[i_step_str].algo.lower()]+'] '
                   '--metric '+paramreg.steps[i_step_str].metric+'['+dest+','+src+',1,'+metricSize+'] '
                   '--convergence '+paramreg.steps[i_step_str].iter+' '
                   '--shrink-factors '+paramreg.steps[i_step_str].shrink+' '
                   '--smoothing-sigmas '+paramreg.steps[i_step_str].smooth+'mm '
                   '--restrict-deformation 1x1x0 '
                   '--output [step'+i_step_str+','+scr_regStep+'] '
                   '--interpolation BSpline[3] '
                   +masking)
            # add verbose
            if param.verbose >= 1:
                cmd += ' --verbose 1'
            # add init translation
            if not paramreg.steps[i_step_str].init == '':
                init_dict = {'geometric': '0', 'centermass': '1', 'origin': '2'}
                cmd += ' -r ['+dest+','+src+','+init_dict[paramreg.steps[i_step_str].init]+']'
            # run command
            status, output = sct.run(cmd, param.verbose)
            # get appropriate file name for transformation
            if paramreg.steps[i_step_str].algo in ['rigid', 'affine', 'translation']:
                warp_forward_out = 'step'+i_step_str+'0GenericAffine.mat'
                warp_inverse_out = '-step'+i_step_str+'0GenericAffine.mat'
            else:
                warp_forward_out = 'step'+i_step_str+'0Warp.nii.gz'
                warp_inverse_out = 'step'+i_step_str+'0InverseWarp.nii.gz'

    # ANTS 2d
    elif paramreg.steps[i_step_str].algo.lower() in ants_registration_params and paramreg.steps[i_step_str].slicewise == '1':
        # make sure type!=label. If type==label, this will be addressed later in the code.
        if not paramreg.steps[i_step_str].type == 'label':
            from msct_register import register_slicewise
            # if shrink!=1, force it to be 1 (otherwise, it generates a wrong 3d warping field). TODO: fix that!
            if not paramreg.steps[i_step_str].shrink == '1':
                sct.printv('\nWARNING: when using slicewise with SyN or BSplineSyN, shrink factor needs to be one. Forcing shrink=1.', 1, 'warning')
                paramreg.steps[i_step_str].shrink = '1'
            warp_forward_out = 'step'+i_step_str + 'Warp.nii.gz'
            warp_inverse_out = 'step'+i_step_str + 'InverseWarp.nii.gz'
            register_slicewise(src,
                               dest,
                               paramreg=paramreg.steps[i_step_str],
                               fname_mask=fname_mask,
                               warp_forward_out=warp_forward_out,
                               warp_inverse_out=warp_inverse_out,
                               ants_registration_params=ants_registration_params,
                               path_qc=param.path_qc,
                               verbose=param.verbose)

    # slice-wise transfo
    elif paramreg.steps[i_step_str].algo in ['centermass', 'centermassrot', 'columnwise']:
        # if type=im, sends warning
        if paramreg.steps[i_step_str].type == 'im':
            sct.printv('\nWARNING: algo '+paramreg.steps[i_step_str].algo+' should be used with type=seg.\n', 1, 'warning')
        # if type=label, exit with error
        elif paramreg.steps[i_step_str].type == 'label':
            sct.printv('\nERROR: this algo is not compatible with type=label. Please use type=im or type=seg', 1, 'error')
        # check if user provided a mask-- if so, inform it will be ignored
        if not fname_mask == '':
            sct.printv('\nWARNING: algo '+paramreg.steps[i_step_str].algo+' will ignore the provided mask.\n', 1, 'warning')
        # smooth data
        if not paramreg.steps[i_step_str].smooth == '0':
            sct.printv('\nSmooth data', param.verbose)
            sct.run('sct_maths -i '+src+' -smooth '+paramreg.steps[i_step_str].smooth+','+paramreg.steps[i_step_str].smooth+',0 -o '+sct.add_suffix(src, '_smooth'))
            sct.run('sct_maths -i '+dest+' -smooth '+paramreg.steps[i_step_str].smooth+','+paramreg.steps[i_step_str].smooth+',0 -o '+sct.add_suffix(dest, '_smooth'))
            src = sct.add_suffix(src, '_smooth')
            dest = sct.add_suffix(dest, '_smooth')
        from msct_register import register_slicewise
        warp_forward_out = 'step'+i_step_str + 'Warp.nii.gz'
        warp_inverse_out = 'step'+i_step_str + 'InverseWarp.nii.gz'
        register_slicewise(src,
                           dest,
                           paramreg=paramreg.steps[i_step_str],
                           fname_mask=fname_mask,
                           warp_forward_out=warp_forward_out,
                           warp_inverse_out=warp_inverse_out,
                           ants_registration_params=ants_registration_params,
                           path_qc=param.path_qc,
                           verbose=param.verbose)

    else:
        sct.printv('\nERROR: algo '+paramreg.steps[i_step_str].algo+' does not exist. Exit program\n', 1, 'error')

    # landmark-based registration
    if paramreg.steps[i_step_str].type in ['label']:
        # check if user specified ilabel and dlabel
        # TODO
        warp_forward_out = 'step' + i_step_str + '0GenericAffine.txt'
        warp_inverse_out = '-step' + i_step_str + '0GenericAffine.txt'
        from msct_register_landmarks import register_landmarks
        register_landmarks(src,
                           dest,
                           paramreg.steps[i_step_str].dof,
                           fname_affine=warp_forward_out,
                           verbose=param.verbose,
                           path_qc=param.path_qc)

    if not os.path.isfile(warp_forward_out):
        # no forward warping field for rigid and affine
        sct.printv('\nERROR: file '+warp_forward_out+' doesn\'t exist (or is not a file).\n' + output +
                   '\nERROR: ANTs failed. Exit program.\n', 1, 'error')
    elif not os.path.isfile(warp_inverse_out) and paramreg.steps[i_step_str].algo not in ['rigid', 'affine', 'translation'] and paramreg.steps[i_step_str].type not in ['label']:
        # no inverse warping field for rigid and affine
        sct.printv('\nERROR: file '+warp_inverse_out+' doesn\'t exist (or is not a file).\n' + output +
                   '\nERROR: ANTs failed. Exit program.\n', 1, 'error')
    else:
        # rename warping fields
        if (paramreg.steps[i_step_str].algo.lower() in ['rigid', 'affine', 'translation'] and paramreg.steps[i_step_str].slicewise == '0'):
            # if ANTs is used with affine/rigid --> outputs .mat file
            warp_forward = 'warp_forward_'+i_step_str+'.mat'
            os.rename(warp_forward_out, warp_forward)
            warp_inverse = '-warp_forward_'+i_step_str+'.mat'
        elif paramreg.steps[i_step_str].type in ['label']:
            # if label-based registration is used --> outputs .txt file
            warp_forward = 'warp_forward_'+i_step_str+'.txt'
            os.rename(warp_forward_out, warp_forward)
            warp_inverse = '-warp_forward_'+i_step_str+'.txt'
        else:
            warp_forward = 'warp_forward_'+i_step_str+'.nii.gz'
            warp_inverse = 'warp_inverse_'+i_step_str+'.nii.gz'
            os.rename(warp_forward_out, warp_forward)
            os.rename(warp_inverse_out, warp_inverse)

    return warp_forward, warp_inverse
Exemplo n.º 26
0
def compute_dti(fname_in, fname_bvals, fname_bvecs, prefix, method, file_mask):
    """
    Compute DTI.
    :param fname_in: input 4d file.
    :param bvals: bvals txt file
    :param bvecs: bvecs txt file
    :param prefix: output prefix. Example: "dti_"
    :param method: algo for computing dti
    :return: True/False
    """
    # Open file.
    from msct_image import Image
    nii = Image(fname_in)
    data = nii.data
    print('data.shape (%d, %d, %d, %d)' % data.shape)

    # open bvecs/bvals
    from dipy.io import read_bvals_bvecs
    bvals, bvecs = read_bvals_bvecs(fname_bvals, fname_bvecs)
    from dipy.core.gradients import gradient_table
    gtab = gradient_table(bvals, bvecs)

    # mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image.
    if not file_mask == '':
        printv('Open mask file...', param.verbose)
        # open mask file
        nii_mask = Image(file_mask)
        mask = nii_mask.data

    # fit tensor model
    printv('Computing tensor using "'+method+'" method...', param.verbose)
    import dipy.reconst.dti as dti
    if method == 'standard':
        tenmodel = dti.TensorModel(gtab)
        if file_mask == '':
            tenfit = tenmodel.fit(data)
        else:
            tenfit = tenmodel.fit(data, mask)
    elif method == 'restore':
        import dipy.denoise.noise_estimate as ne
        sigma = ne.estimate_sigma(data)
        dti_restore = dti.TensorModel(gtab, fit_method='RESTORE', sigma=sigma)
        if file_mask == '':
            tenfit = dti_restore.fit(data)
        else:
            tenfit = dti_restore.fit(data, mask)

    # Compute metrics
    printv('Computing metrics...', param.verbose)
    # FA
    from dipy.reconst.dti import fractional_anisotropy
    nii.data = fractional_anisotropy(tenfit.evals)
    nii.setFileName(prefix+'FA.nii.gz')
    nii.save('float32')
    # MD
    from dipy.reconst.dti import mean_diffusivity
    nii.data = mean_diffusivity(tenfit.evals)
    nii.setFileName(prefix+'MD.nii.gz')
    nii.save('float32')
    # RD
    from dipy.reconst.dti import radial_diffusivity
    nii.data = radial_diffusivity(tenfit.evals)
    nii.setFileName(prefix+'RD.nii.gz')
    nii.save('float32')
    # AD
    from dipy.reconst.dti import axial_diffusivity
    nii.data = axial_diffusivity(tenfit.evals)
    nii.setFileName(prefix+'AD.nii.gz')
    nii.save('float32')

    return True
Exemplo n.º 27
0
def main(args = None):

    dim_list = ['x', 'y', 'z', 't']

    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = arguments["-i"]
    fname_out = arguments["-o"]
    verbose = int(arguments['-v'])

    # Open file(s)
    im = Image(fname_in)
    data = im.data  # 3d or 4d numpy array
    dim = im.dim

    # run command
    if '-otsu' in arguments:
        param = arguments['-otsu']
        data_out = otsu(data, param)

    elif '-otsu_adap' in arguments:
        param = arguments['-otsu_adap']
        data_out = otsu_adap(data, param[0], param[1])

    elif '-otsu_median' in arguments:
        param = arguments['-otsu_median']
        data_out = otsu_median(data, param[0], param[1])

    elif '-thr' in arguments:
        param = arguments['-thr']
        data_out = threshold(data, param)

    elif '-percent' in arguments:
        param = arguments['-percent']
        data_out = perc(data, param)

    elif '-bin' in arguments:
        bin_thr = arguments['-bin']
        data_out = binarise(data, bin_thr=bin_thr)

    elif '-add' in arguments:
        from numpy import sum
        data2 = get_data_or_scalar(arguments["-add"], data)
        data_concat = concatenate_along_4th_dimension(data, data2)
        data_out = sum(data_concat, axis=3)

    elif '-sub' in arguments:
        data2 = get_data_or_scalar(arguments['-sub'], data)
        data_out = data - data2

    elif "-laplacian" in arguments:
        sigmas = arguments["-laplacian"]
        if len(sigmas) == 1:
            sigmas = [sigmas for i in range(len(data.shape))]
        elif len(sigmas) != len(data.shape):
            printv(parser.usage.generate(error='ERROR: -laplacian need the same number of inputs as the number of image dimension OR only one input'))
        # adjust sigma based on voxel size
        sigmas = [sigmas[i] / dim[i+4] for i in range(3)]
        # smooth data
        data_out = laplacian(data, sigmas)

    elif '-mul' in arguments:
        from numpy import prod
        data2 = get_data_or_scalar(arguments["-mul"], data)
        data_concat = concatenate_along_4th_dimension(data, data2)
        data_out = prod(data_concat, axis=3)

    elif '-div' in arguments:
        from numpy import divide
        data2 = get_data_or_scalar(arguments["-div"], data)
        data_out = divide(data, data2)

    elif '-mean' in arguments:
        from numpy import mean
        dim = dim_list.index(arguments['-mean'])
        if dim+1 > len(np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = mean(data, dim)

    elif '-std' in arguments:
        from numpy import std
        dim = dim_list.index(arguments['-std'])
        if dim+1 > len(np.shape(data)):  # in case input volume is 3d and dim=t
            data = data[..., np.newaxis]
        data_out = std(data, dim)

    elif "-smooth" in arguments:
        sigmas = arguments["-smooth"]
        if len(sigmas) == 1:
            sigmas = [sigmas[0] for i in range(len(data.shape))]
        elif len(sigmas) != len(data.shape):
            printv(parser.usage.generate(error='ERROR: -smooth need the same number of inputs as the number of image dimension OR only one input'))
        # adjust sigma based on voxel size
        sigmas = [sigmas[i] / dim[i+4] for i in range(3)]
        # smooth data
        data_out = smooth(data, sigmas)

    elif '-dilate' in arguments:
        data_out = dilate(data, arguments['-dilate'])

    elif '-erode' in arguments:
        data_out = erode(data, arguments['-erode'])

    elif '-denoise' in arguments:
        # parse denoising arguments
        p, b = 1, 5  # default arguments
        list_denoise = arguments['-denoise']
        for i in list_denoise:
            if 'p' in i:
                p = int(i.split('=')[1])
            if 'b' in i:
                b = int(i.split('=')[1])
        data_out = denoise_nlmeans(data, patch_radius=p, block_radius=b)

    elif '-symmetrize' in arguments:
        data_out = (data + data[range(data.shape[0]-1, -1, -1), :, :]) / float(2)

    elif '-mi' in arguments:
        # input 1 = from flag -i --> im
        # input 2 = from flag -mi
        im_2 = Image(arguments['-mi'])
        compute_similarity(im.data, im_2.data, fname_out, metric='mi', verbose=verbose)

        data_out=None

    elif '-corr' in arguments:
        # input 1 = from flag -i --> im
        # input 2 = from flag -mi
        im_2 = Image(arguments['-corr'])
        compute_similarity(im.data, im_2.data, fname_out, metric='corr', verbose=verbose)

        data_out=None


    # if no flag is set
    else:
        data_out = None
        printv(parser.usage.generate(error='ERROR: you need to specify an operation to do on the input image'))

    if data_out is not None:
        # Write output
        nii_out = Image(fname_in)  # use header of input file
        nii_out.data = data_out
        nii_out.setFileName(fname_out)
        nii_out.save()
    # TODO: case of multiple outputs
    # assert len(data_out) == n_out
    # if n_in == n_out:
    #     for im_in, d_out, fn_out in zip(nii, data_out, fname_out):
    #         im_in.data = d_out
    #         im_in.setFileName(fn_out)
    #         if "-w" in arguments:
    #             im_in.hdr.set_intent('vector', (), '')
    #         im_in.save()
    # elif n_out == 1:
    #     nii[0].data = data_out[0]
    #     nii[0].setFileName(fname_out[0])
    #     if "-w" in arguments:
    #             nii[0].hdr.set_intent('vector', (), '')
    #     nii[0].save()
    # elif n_out > n_in:
    #     for dat_out, name_out in zip(data_out, fname_out):
    #         im_out = nii[0].copy()
    #         im_out.data = dat_out
    #         im_out.setFileName(name_out)
    #         if "-w" in arguments:
    #             im_out.hdr.set_intent('vector', (), '')
    #         im_out.save()
    # else:
    #     printv(parser.usage.generate(error='ERROR: not the correct numbers of inputs and outputs'))

    # display message
    if data_out is not None:
        printv('\nDone! To view results, type:', verbose)
        printv('fslview '+fname_out+' &\n', verbose, 'info')
    else:
        printv('\nDone! File created: '+fname_out, verbose, 'info')
#!/usr/bin/env python
# change type of template data

import os
import commands
import sys
from shutil import move
# Get path of the toolbox
status, path_sct = commands.getstatusoutput('echo $SCT_DIR')
# Append path that contains scripts, to be able to load modules
sys.path.append(path_sct + '/scripts')
from msct_image import Image
import sct_utils as sct

path_template = '/Users/julien/data/PAM50/template'
folder_PAM50 = 'PAM50/template/'
os.chdir(path_template)
sct.create_folder(folder_PAM50)

for file_template in ['MNI-Poly-AMU_T1.nii.gz', 'MNI-Poly-AMU_T2.nii.gz', 'MNI-Poly-AMU_T2star.nii.gz']:
    im = Image(file_template)
    # remove negative values
    data = im.data
    data[data<0] = 0
    im.data = data
    im.changeType('uint16')
    file_new = file_template.replace('MNI-Poly-AMU', 'PAM50')
    im.setFileName(file_new)
    im.save()
    # move to folder
    move(file_new, folder_PAM50+file_new)
Exemplo n.º 29
0
def main(args=None):

    # initializations
    output_type = ''
    param = Param()
    dim_list = ['x', 'y', 'z', 't']

    # check user arguments
    if not args:
        args = sys.argv[1:]

    # Get parser info
    parser = get_parser()
    arguments = parser.parse(args)
    fname_in = arguments["-i"]
    n_in = len(fname_in)
    verbose = int(arguments['-v'])

    if "-o" in arguments:
        fname_out = arguments["-o"]
    else:
        fname_out = None

    # Open file(s)
    # im_in_list = [Image(fn) for fn in fname_in]

    # run command
    if "-concat" in arguments:
        dim = arguments["-concat"]
        assert dim in dim_list
        dim = dim_list.index(dim)
        im_out = [concat_data(fname_in, dim)]  # TODO: adapt to fname_in

    elif "-copy-header" in arguments:
        im_in = Image(fname_in[0])
        im_dest = Image(arguments["-copy-header"])
        im_out = [copy_header(im_in, im_dest)]

    elif '-display-warp' in arguments:
        im_in = fname_in[0]
        visualize_warp(im_in, fname_grid=None, step=3, rm_tmp=True)
        im_out = None

    elif "-getorient" in arguments:
        im_in = Image(fname_in[0])
        orient = orientation(im_in, get=True, verbose=verbose)
        im_out = None

    elif '-keep-vol' in arguments:
        index_vol = arguments['-keep-vol']
        im_in = Image(fname_in[0])
        im_out = [remove_vol(im_in, index_vol, todo='keep')]

    elif '-mcs' in arguments:
        im_in = Image(fname_in[0])
        if n_in != 1:
            printv(
                parser.usage.generate(error='ERROR: -mcs need only one input'))
        if len(im_in.data.shape) != 5:
            printv(
                parser.usage.generate(
                    error='ERROR: -mcs input need to be a multi-component image'
                ))
        im_out = multicomponent_split(im_in)

    elif '-omc' in arguments:
        im_ref = Image(fname_in[0])
        for fname in fname_in:
            im = Image(fname)
            if im.data.shape != im_ref.data.shape:
                printv(
                    parser.usage.generate(
                        error=
                        'ERROR: -omc inputs need to have all the same shapes'))
            del im
        im_out = [multicomponent_merge(fname_in)]  # TODO: adapt to fname_in

    elif "-pad" in arguments:
        im_in = Image(fname_in[0])
        ndims = len(im_in.getDataShape())
        if ndims != 3:
            printv('ERROR: you need to specify a 3D input file.', 1, 'error')
            return

        pad_arguments = arguments["-pad"].split(',')
        if len(pad_arguments) != 3:
            printv('ERROR: you need to specify 3 padding values.', 1, 'error')

        padx, pady, padz = pad_arguments
        padx, pady, padz = int(padx), int(pady), int(padz)
        im_out = [
            pad_image(im_in,
                      pad_x_i=padx,
                      pad_x_f=padx,
                      pad_y_i=pady,
                      pad_y_f=pady,
                      pad_z_i=padz,
                      pad_z_f=padz)
        ]

    elif "-pad-asym" in arguments:
        im_in = Image(fname_in[0])
        ndims = len(im_in.getDataShape())
        if ndims != 3:
            printv('ERROR: you need to specify a 3D input file.', 1, 'error')
            return

        pad_arguments = arguments["-pad-asym"].split(',')
        if len(pad_arguments) != 6:
            printv('ERROR: you need to specify 6 padding values.', 1, 'error')

        padxi, padxf, padyi, padyf, padzi, padzf = pad_arguments
        padxi, padxf, padyi, padyf, padzi, padzf = int(padxi), int(padxf), int(
            padyi), int(padyf), int(padzi), int(padzf)
        im_out = [
            pad_image(im_in,
                      pad_x_i=padxi,
                      pad_x_f=padxf,
                      pad_y_i=padyi,
                      pad_y_f=padyf,
                      pad_z_i=padzi,
                      pad_z_f=padzf)
        ]

    elif '-remove-vol' in arguments:
        index_vol = arguments['-remove-vol']
        im_in = Image(fname_in[0])
        im_out = [remove_vol(im_in, index_vol, todo='remove')]

    elif "-setorient" in arguments:
        sct.printv(fname_in[0])
        im_in = Image(fname_in[0])
        im_out = [
            orientation(im_in,
                        ori=arguments["-setorient"],
                        set=True,
                        verbose=verbose,
                        fname_out=fname_out)
        ]

    elif "-setorient-data" in arguments:
        im_in = Image(fname_in[0])
        im_out = [
            orientation(im_in,
                        ori=arguments["-setorient-data"],
                        set_data=True,
                        verbose=verbose)
        ]

    elif "-split" in arguments:
        dim = arguments["-split"]
        assert dim in dim_list
        im_in = Image(fname_in[0])
        dim = dim_list.index(dim)
        im_out = split_data(im_in, dim)

    elif '-type' in arguments:
        output_type = arguments['-type']
        im_in = Image(fname_in[0])
        im_out = [im_in]  # TODO: adapt to fname_in

    else:
        im_out = None
        printv(
            parser.usage.generate(
                error=
                'ERROR: you need to specify an operation to do on the input image'
            ))

    # in case fname_out is not defined, use first element of input file name list
    if fname_out == None:
        fname_out = fname_in[0]

    # Write output
    if im_out is not None:
        printv('Generate output files...', verbose)
        # if only one output
        if len(im_out) == 1 and not '-split' in arguments:
            im_out[0].setFileName(fname_out) if fname_out is not None else None
            im_out[0].save(squeeze_data=False,
                           type=output_type,
                           verbose=verbose)
            sct.display_viewer_syntax([fname_out], verbose=verbose)
        if '-mcs' in arguments:
            # use input file name and add _X, _Y _Z. Keep the same extension
            fname_out = []
            for i_dim in range(3):
                fname_out.append(
                    add_suffix(fname_in[0], '_' + dim_list[i_dim].upper()))
                im_out[i_dim].setFileName(fname_out[i_dim])
                im_out[i_dim].save(verbose=verbose)
            sct.display_viewer_syntax(fname_out)
        if '-split' in arguments:
            # use input file name and add _"DIM+NUMBER". Keep the same extension
            l_fname_out = []
            for i, im in enumerate(im_out):
                l_fname_out.append(
                    add_suffix(fname_in[0],
                               '_' + dim_list[dim].upper() + str(i).zfill(4)))
                im.setFileName(l_fname_out[i])
                im.save(verbose=verbose)
            sct.display_viewer_syntax(l_fname_out)

    elif "-getorient" in arguments:
        sct.printv(orient)

    elif '-display-warp' in arguments:
        printv('Warping grid generated.', verbose, 'info')
def compute_csa(fname_segmentation, verbose, remove_temp_files, step, smoothing_param, figure_fit, file_csa_volume, slices, vert_levels, fname_vertebral_labeling='', algo_fitting = 'hanning', type_window = 'hanning', window_length = 80):

    # Extract path, file and extension
    fname_segmentation = os.path.abspath(fname_segmentation)
    path_data, file_data, ext_data = sct.extract_fname(fname_segmentation)

    # create temporary folder
    sct.printv('\nCreate temporary folder...', verbose)
    path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S") + '_'+str(randint(1, 1000000)), 1)
    sct.run('mkdir '+path_tmp, verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    sct.run('sct_convert -i '+fname_segmentation+' -o '+path_tmp+'segmentation.nii.gz', verbose)
    # go to tmp folder
    os.chdir(path_tmp)
    # Change orientation of the input segmentation into RPI
    sct.printv('\nChange orientation to RPI...', verbose)
    sct.run('sct_image -i segmentation.nii.gz -setorient RPI -o segmentation_RPI.nii.gz', verbose)

    # Open segmentation volume
    sct.printv('\nOpen segmentation volume...', verbose)
    im_seg = Image('segmentation_RPI.nii.gz')
    data_seg = im_seg.data
    # hdr_seg = im_seg.hdr

    # Get size of data
    sct.printv('\nGet data dimensions...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = im_seg.dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), verbose)

    # # Extract min and max index in Z direction
    X, Y, Z = (data_seg > 0).nonzero()
    min_z_index, max_z_index = min(Z), max(Z)

    # extract centerline and smooth it
    x_centerline_fit, y_centerline_fit, z_centerline, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline('segmentation_RPI.nii.gz', algo_fitting=algo_fitting, type_window=type_window, window_length=window_length, verbose=verbose)
    z_centerline_scaled = [x*pz for x in z_centerline]

    # Compute CSA
    sct.printv('\nCompute CSA...', verbose)

    # Empty arrays in which CSA for each z slice will be stored
    csa = np.zeros(max_z_index-min_z_index+1)

    for iz in xrange(min_z_index, max_z_index+1):

        # compute the vector normal to the plane
        normal = normalize(np.array([x_centerline_deriv[iz-min_z_index], y_centerline_deriv[iz-min_z_index], z_centerline_deriv[iz-min_z_index]]))

        # compute the angle between the normal vector of the plane and the vector z
        angle = np.arccos(np.dot(normal, [0, 0, 1]))

        # compute the number of voxels, assuming the segmentation is coded for partial volume effect between 0 and 1.
        number_voxels = np.sum(data_seg[:, :, iz])

        # compute CSA, by scaling with voxel size (in mm) and adjusting for oblique plane
        csa[iz-min_z_index] = number_voxels * px * py * np.cos(angle)

    sct.printv('\nSmooth CSA across slices...', verbose)
    if smoothing_param:
        from msct_smooth import smoothing_window
        sct.printv('.. Hanning window: '+str(smoothing_param)+' mm', verbose)
        csa_smooth = smoothing_window(csa, window_len=smoothing_param/pz, window='hanning', verbose=0)
        # display figure
        if verbose == 2:
            import matplotlib.pyplot as plt
            plt.figure()
            pltx, = plt.plot(z_centerline_scaled, csa, 'bo')
            pltx_fit, = plt.plot(z_centerline_scaled, csa_smooth, 'r', linewidth=2)
            plt.title("Cross-sectional area (CSA)")
            plt.xlabel('z (mm)')
            plt.ylabel('CSA (mm^2)')
            plt.legend([pltx, pltx_fit], ['Raw', 'Smoothed'])
            plt.show()
        # update variable
        csa = csa_smooth
    else:
        sct.printv('.. No smoothing!', verbose)


    # Create output text file
    sct.printv('\nWrite text file...', verbose)
    file_results = open('csa.txt', 'w')
    for i in range(min_z_index, max_z_index+1):
        file_results.write(str(int(i)) + ',' + str(csa[i-min_z_index])+'\n')
        # Display results
        sct.printv('z='+str(i-min_z_index)+': '+str(csa[i-min_z_index])+' mm^2', verbose, 'bold')
    file_results.close()

    # output volume of csa values
    sct.printv('\nCreate volume of CSA values...', verbose)
    data_csa = data_seg.astype(np.float32, copy=False)
    # loop across slices
    for iz in range(min_z_index, max_z_index+1):
        # retrieve seg pixels
        x_seg, y_seg = (data_csa[:, :, iz] > 0).nonzero()
        seg = [[x_seg[i],y_seg[i]] for i in range(0, len(x_seg))]
        # loop across pixels in segmentation
        for i in seg:
            # replace value with csa value
            data_csa[i[0], i[1], iz] = csa[iz-min_z_index]
    # replace data
    im_seg.data = data_csa
    # set original orientation
    # TODO: FIND ANOTHER WAY!!
    # im_seg.change_orientation(orientation) --> DOES NOT WORK!
    # set file name -- use .gz because faster to write
    im_seg.setFileName('csa_volume_RPI.nii.gz')
    im_seg.changeType('float32')
    # save volume
    im_seg.save()

    # get orientation of the input data
    im_seg_original = Image('segmentation.nii.gz')
    orientation = im_seg_original.orientation
    sct.run('sct_image -i csa_volume_RPI.nii.gz -setorient '+orientation+' -o '+file_csa_volume)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    copyfile(path_tmp+'csa.txt', path_data+param.fname_csa)
    # sct.generate_output_file(path_tmp+'csa.txt', path_data+param.fname_csa)  # extension already included in param.fname_csa
    sct.generate_output_file(path_tmp+file_csa_volume, path_data+file_csa_volume)  # extension already included in name_output

    # average csa across vertebral levels or slices if asked (flag -z or -l)
    if slices or vert_levels:
        from sct_extract_metric import save_metrics

        warning = ''
        if vert_levels and not fname_vertebral_labeling:
            sct.printv('\nERROR: Vertebral labeling file is missing. See usage.\n', 1, 'error')

        elif vert_levels and fname_vertebral_labeling:

            # from sct_extract_metric import get_slices_matching_with_vertebral_levels
            sct.printv('\tSelected vertebral levels... '+vert_levels)
            # convert the vertebral labeling file to RPI orientation
            im_vertebral_labeling = set_orientation(Image(fname_vertebral_labeling), 'RPI', fname_out=path_tmp+'vertebral_labeling_RPI.nii')

            # get the slices corresponding to the vertebral levels
            # slices, vert_levels_list, warning = get_slices_matching_with_vertebral_levels(data_seg, vert_levels, im_vertebral_labeling.data, 1)
            slices, vert_levels_list, warning = get_slices_matching_with_vertebral_levels_based_centerline(vert_levels, im_vertebral_labeling.data, x_centerline_fit, y_centerline_fit, z_centerline)

        elif not vert_levels:
            vert_levels_list = []

        sct.printv('Average CSA across slices...', type='info')

        # parse the selected slices
        slices_lim = slices.strip().split(':')
        slices_list = range(int(slices_lim[0]), int(slices_lim[1])+1)

        CSA_for_selected_slices = []
        # Read the file csa.txt and get the CSA for the selected slices
        with open(path_data+param.fname_csa) as openfile:
            for line in openfile:
                line_split = line.strip().split(',')
                if int(line_split[0]) in slices_list:
                    CSA_for_selected_slices.append(float(line_split[1]))

        # average the CSA
        mean_CSA = np.mean(np.asarray(CSA_for_selected_slices))
        std_CSA = np.std(np.asarray(CSA_for_selected_slices))

        sct.printv('Mean CSA: '+str(mean_CSA)+' +/- '+str(std_CSA)+' mm^2', type='info')

        # write result into output file
        save_metrics([0], [file_data], slices, [mean_CSA], [std_CSA], path_data + 'csa_mean.txt', path_data+file_csa_volume, 'nb_voxels x px x py x cos(theta) slice-by-slice (in mm^3)', '', actual_vert=vert_levels_list, warning_vert_levels=warning)

        # compute volume between the selected slices
        sct.printv('Compute the volume in between the selected slices...', type='info')
        nb_vox = np.sum(data_seg[:, :, slices_list])
        volume = nb_vox*px*py*pz
        sct.printv('Volume in between the selected slices: '+str(volume)+' mm^3', type='info')

        # write result into output file
        save_metrics([0], [file_data], slices, [volume], [np.nan], path_data + 'volume.txt', path_data+file_data, 'nb_voxels x px x py x pz (in mm^3)', '', actual_vert=vert_levels_list, warning_vert_levels=warning)

    # Remove temporary files
    if remove_temp_files:
        sct.printv('\nRemove temporary files...')
        sct.run('rm -rf '+path_tmp, error_exit='warning')
Exemplo n.º 31
0
def main():

    # get default parameters
    step1 = Paramreg(step='1',
                     type='seg',
                     algo='slicereg',
                     metric='MeanSquares',
                     iter='10')
    step2 = Paramreg(step='2', type='im', algo='syn', metric='MI', iter='3')
    # step1 = Paramreg()
    paramreg = ParamregMultiStep([step1, step2])

    # step1 = Paramreg_step(step='1', type='seg', algo='bsplinesyn', metric='MeanSquares', iter='10', shrink='1', smooth='0', gradStep='0.5')
    # step2 = Paramreg_step(step='2', type='im', algo='syn', metric='MI', iter='10', shrink='1', smooth='0', gradStep='0.5')
    # paramreg = ParamregMultiStep([step1, step2])

    # Initialize the parser
    parser = Parser(__file__)
    parser.usage.set_description('Register anatomical image to the template.')
    parser.add_option(name="-i",
                      type_value="file",
                      description="Anatomical image.",
                      mandatory=True,
                      example="anat.nii.gz")
    parser.add_option(name="-s",
                      type_value="file",
                      description="Spinal cord segmentation.",
                      mandatory=True,
                      example="anat_seg.nii.gz")
    parser.add_option(
        name="-l",
        type_value="file",
        description=
        "Labels. See: http://sourceforge.net/p/spinalcordtoolbox/wiki/create_labels/",
        mandatory=True,
        default_value='',
        example="anat_labels.nii.gz")
    parser.add_option(name="-t",
                      type_value="folder",
                      description="Path to MNI-Poly-AMU template.",
                      mandatory=False,
                      default_value=param.path_template)
    parser.add_option(
        name="-p",
        type_value=[[':'], 'str'],
        description=
        """Parameters for registration (see sct_register_multimodal). Default:\n--\nstep=1\ntype="""
        + paramreg.steps['1'].type + """\nalgo=""" + paramreg.steps['1'].algo +
        """\nmetric=""" + paramreg.steps['1'].metric + """\npoly=""" +
        paramreg.steps['1'].poly + """\n--\nstep=2\ntype=""" +
        paramreg.steps['2'].type + """\nalgo=""" + paramreg.steps['2'].algo +
        """\nmetric=""" + paramreg.steps['2'].metric + """\niter=""" +
        paramreg.steps['2'].iter + """\nshrink=""" +
        paramreg.steps['2'].shrink + """\nsmooth=""" +
        paramreg.steps['2'].smooth + """\ngradStep=""" +
        paramreg.steps['2'].gradStep + """\n--""",
        mandatory=False,
        example=
        "step=2,type=seg,algo=bsplinesyn,metric=MeanSquares,iter=5,shrink=2:step=3,type=im,algo=syn,metric=MI,iter=5,shrink=1,gradStep=0.3"
    )
    parser.add_option(name="-r",
                      type_value="multiple_choice",
                      description="""Remove temporary files.""",
                      mandatory=False,
                      default_value='1',
                      example=['0', '1'])
    parser.add_option(
        name="-v",
        type_value="multiple_choice",
        description="""Verbose. 0: nothing. 1: basic. 2: extended.""",
        mandatory=False,
        default_value=param.verbose,
        example=['0', '1', '2'])
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        fname_data = '/Users/julien/data/temp/sct_example_data/t2/t2.nii.gz'
        fname_landmarks = '/Users/julien/data/temp/sct_example_data/t2/labels.nii.gz'
        fname_seg = '/Users/julien/data/temp/sct_example_data/t2/t2_seg.nii.gz'
        path_template = param.path_template
        remove_temp_files = 0
        verbose = 2
        # speed = 'superfast'
        #param_reg = '2,BSplineSyN,0.6,MeanSquares'
    else:
        arguments = parser.parse(sys.argv[1:])

        # get arguments
        fname_data = arguments['-i']
        fname_seg = arguments['-s']
        fname_landmarks = arguments['-l']
        path_template = arguments['-t']
        remove_temp_files = int(arguments['-r'])
        verbose = int(arguments['-v'])
        if '-p' in arguments:
            paramreg_user = arguments['-p']
            # update registration parameters
            for paramStep in paramreg_user:
                paramreg.addStep(paramStep)

    # initialize other parameters
    file_template = param.file_template
    file_template_label = param.file_template_label
    file_template_seg = param.file_template_seg
    output_type = param.output_type
    zsubsample = param.zsubsample
    # smoothing_sigma = param.smoothing_sigma

    # start timer
    start_time = time.time()

    # get absolute path - TO DO: remove! NEVER USE ABSOLUTE PATH...
    path_template = os.path.abspath(path_template)

    # get fname of the template + template objects
    fname_template = sct.slash_at_the_end(path_template, 1) + file_template
    fname_template_label = sct.slash_at_the_end(path_template,
                                                1) + file_template_label
    fname_template_seg = sct.slash_at_the_end(path_template,
                                              1) + file_template_seg

    # check file existence
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_label, verbose)
    sct.check_file_exist(fname_template_seg, verbose)

    # print arguments
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('.. Data:                 ' + fname_data, verbose)
    sct.printv('.. Landmarks:            ' + fname_landmarks, verbose)
    sct.printv('.. Segmentation:         ' + fname_seg, verbose)
    sct.printv('.. Path template:        ' + path_template, verbose)
    sct.printv('.. Output type:          ' + str(output_type), verbose)
    sct.printv('.. Remove temp files:    ' + str(remove_temp_files), verbose)

    sct.printv('\nParameters for registration:')
    for pStep in range(1, len(paramreg.steps) + 1):
        sct.printv('Step #' + paramreg.steps[str(pStep)].step, verbose)
        sct.printv('.. Type #' + paramreg.steps[str(pStep)].type, verbose)
        sct.printv(
            '.. Algorithm................ ' + paramreg.steps[str(pStep)].algo,
            verbose)
        sct.printv(
            '.. Metric................... ' +
            paramreg.steps[str(pStep)].metric, verbose)
        sct.printv(
            '.. Number of iterations..... ' + paramreg.steps[str(pStep)].iter,
            verbose)
        sct.printv(
            '.. Shrink factor............ ' +
            paramreg.steps[str(pStep)].shrink, verbose)
        sct.printv(
            '.. Smoothing factor......... ' +
            paramreg.steps[str(pStep)].smooth, verbose)
        sct.printv(
            '.. Gradient step............ ' +
            paramreg.steps[str(pStep)].gradStep, verbose)
        sct.printv(
            '.. Degree of polynomial..... ' + paramreg.steps[str(pStep)].poly,
            verbose)

    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    sct.printv('\nCheck input labels...')
    # check if label image contains coherent labels
    image_label = Image(fname_landmarks)
    # -> all labels must be different
    labels = image_label.getNonZeroCoordinates(sorting='value')
    hasDifferentLabels = True
    for lab in labels:
        for otherlabel in labels:
            if lab != otherlabel and lab.hasEqualValue(otherlabel):
                hasDifferentLabels = False
                break
    if not hasDifferentLabels:
        sct.printv(
            'ERROR: Wrong landmarks input. All labels must be different.',
            verbose, 'error')
    # all labels must be available in tempalte
    image_label_template = Image(fname_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(
        sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv(
            'ERROR: Wrong landmarks input. Labels must have correspondance in tempalte space. \nLabel max '
            'provided: ' + str(labels[-1].value) +
            '\nLabel max from template: ' + str(labels_template[-1].value),
            verbose, 'error')

    # create temporary folder
    sct.printv('\nCreate temporary folder...', verbose)
    path_tmp = 'tmp.' + time.strftime("%y%m%d%H%M%S")
    status, output = sct.run('mkdir ' + path_tmp)

    # copy files to temporary folder
    sct.printv('\nCopy files...', verbose)
    sct.run('isct_c3d ' + fname_data + ' -o ' + path_tmp + '/data.nii')
    sct.run('isct_c3d ' + fname_landmarks + ' -o ' + path_tmp +
            '/landmarks.nii.gz')
    sct.run('isct_c3d ' + fname_seg + ' -o ' + path_tmp +
            '/segmentation.nii.gz')
    sct.run('isct_c3d ' + fname_template + ' -o ' + path_tmp + '/template.nii')
    sct.run('isct_c3d ' + fname_template_label + ' -o ' + path_tmp +
            '/template_labels.nii.gz')
    sct.run('isct_c3d ' + fname_template_seg + ' -o ' + path_tmp +
            '/template_seg.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # resample data to 1mm isotropic
    sct.printv('\nResample data to 1mm isotropic...', verbose)
    sct.run(
        'isct_c3d data.nii -resample-mm 1.0x1.0x1.0mm -interpolation Linear -o datar.nii'
    )
    sct.run(
        'isct_c3d segmentation.nii.gz -resample-mm 1.0x1.0x1.0mm -interpolation NearestNeighbor -o segmentationr.nii.gz'
    )
    # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling with neighrest neighbour can make them disappear. Therefore a more clever approach is required.
    resample_labels('landmarks.nii.gz', 'datar.nii', 'landmarksr.nii.gz')
    # # TODO
    # sct.run('sct_label_utils -i datar.nii -t create -x 124,186,19,2:129,98,23,8 -o landmarksr.nii.gz')

    # Change orientation of input images to RPI
    sct.printv('\nChange orientation of input images to RPI...', verbose)
    set_orientation('datar.nii', 'RPI', 'data_rpi.nii')
    set_orientation('landmarksr.nii.gz', 'RPI', 'landmarks_rpi.nii.gz')
    set_orientation('segmentationr.nii.gz', 'RPI', 'segmentation_rpi.nii.gz')

    # # Change orientation of input images to RPI
    # sct.printv('\nChange orientation of input images to RPI...', verbose)
    # set_orientation('data.nii', 'RPI', 'data_rpi.nii')
    # set_orientation('landmarks.nii.gz', 'RPI', 'landmarks_rpi.nii.gz')
    # set_orientation('segmentation.nii.gz', 'RPI', 'segmentation_rpi.nii.gz')

    # get landmarks in native space
    # crop segmentation
    # output: segmentation_rpi_crop.nii.gz
    sct.run(
        'sct_crop_image -i segmentation_rpi.nii.gz -o segmentation_rpi_crop.nii.gz -dim 2 -bzmax'
    )

    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...',
               verbose)
    sct.run(
        'sct_straighten_spinalcord -i segmentation_rpi_crop.nii.gz -c segmentation_rpi_crop.nii.gz -r 0 -v '
        + str(verbose), verbose)
    # re-define warping field using non-cropped space (to avoid issue #367)
    sct.run(
        'sct_concat_transfo -w warp_straight2curve.nii.gz -d data_rpi.nii -o warp_straight2curve.nii.gz'
    )

    # Label preparation:
    # --------------------------------------------------------------------------------
    # Remove unused label on template. Keep only label present in the input label image
    sct.printv(
        '\nRemove unused label on template. Keep only label present in the input label image...',
        verbose)
    sct.run(
        'sct_label_utils -t remove -i template_labels.nii.gz -o template_label.nii.gz -r landmarks_rpi.nii.gz'
    )

    # Make sure landmarks are INT
    sct.printv('\nConvert landmarks to INT...', verbose)
    sct.run(
        'isct_c3d template_label.nii.gz -type int -o template_label.nii.gz',
        verbose)

    # Create a cross for the template labels - 5 mm
    sct.printv('\nCreate a 5 mm cross for the template labels...', verbose)
    sct.run(
        'sct_label_utils -t cross -i template_label.nii.gz -o template_label_cross.nii.gz -c 5'
    )

    # Create a cross for the input labels and dilate for straightening preparation - 5 mm
    sct.printv(
        '\nCreate a 5mm cross for the input labels and dilate for straightening preparation...',
        verbose)
    sct.run(
        'sct_label_utils -t cross -i landmarks_rpi.nii.gz -o landmarks_rpi_cross3x3.nii.gz -c 5 -d'
    )

    # Apply straightening to labels
    sct.printv('\nApply straightening to labels...', verbose)
    sct.run(
        'sct_apply_transfo -i landmarks_rpi_cross3x3.nii.gz -o landmarks_rpi_cross3x3_straight.nii.gz -d segmentation_rpi_crop_straight.nii.gz -w warp_curve2straight.nii.gz -x nn'
    )

    # Convert landmarks from FLOAT32 to INT
    sct.printv('\nConvert landmarks from FLOAT32 to INT...', verbose)
    sct.run(
        'isct_c3d landmarks_rpi_cross3x3_straight.nii.gz -type int -o landmarks_rpi_cross3x3_straight.nii.gz'
    )

    # Remove labels that do not correspond with each others.
    sct.printv('\nRemove labels that do not correspond with each others.',
               verbose)
    sct.run(
        'sct_label_utils -t remove-symm -i landmarks_rpi_cross3x3_straight.nii.gz -o landmarks_rpi_cross3x3_straight.nii.gz,template_label_cross.nii.gz -r template_label_cross.nii.gz'
    )

    # Estimate affine transfo: straight --> template (landmark-based)'
    sct.printv(
        '\nEstimate affine transfo: straight anat --> template (landmark-based)...',
        verbose)
    # converting landmarks straight and curved to physical coordinates
    image_straight = Image('landmarks_rpi_cross3x3_straight.nii.gz')
    landmark_straight = image_straight.getNonZeroCoordinates(sorting='value')
    image_template = Image('template_label_cross.nii.gz')
    landmark_template = image_template.getNonZeroCoordinates(sorting='value')
    # Reorganize landmarks
    points_fixed, points_moving = [], []
    landmark_straight_mean = []
    for coord in landmark_straight:
        if coord.value not in [c.value for c in landmark_straight_mean]:
            temp_landmark = coord
            temp_number = 1
            for other_coord in landmark_straight:
                if coord.hasEqualValue(other_coord) and coord != other_coord:
                    temp_landmark += other_coord
                    temp_number += 1
            landmark_straight_mean.append(temp_landmark / temp_number)

    for coord in landmark_straight_mean:
        point_straight = image_straight.transfo_pix2phys(
            [[coord.x, coord.y, coord.z]])
        points_moving.append(
            [point_straight[0][0], point_straight[0][1], point_straight[0][2]])
    for coord in landmark_template:
        point_template = image_template.transfo_pix2phys(
            [[coord.x, coord.y, coord.z]])
        points_fixed.append(
            [point_template[0][0], point_template[0][1], point_template[0][2]])

    # Register curved landmarks on straight landmarks based on python implementation
    sct.printv(
        '\nComputing rigid transformation (algo=translation-scaling-z) ...',
        verbose)
    import msct_register_landmarks
    (rotation_matrix, translation_array, points_moving_reg, points_moving_barycenter) = \
        msct_register_landmarks.getRigidTransformFromLandmarks(
            points_fixed, points_moving, constraints='translation-scaling-z', show=False)

    # writing rigid transformation file
    text_file = open("straight2templateAffine.txt", "w")
    text_file.write("#Insight Transform File V1.0\n")
    text_file.write("#Transform 0\n")
    text_file.write(
        "Transform: FixedCenterOfRotationAffineTransform_double_3_3\n")
    text_file.write(
        "Parameters: %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f\n"
        % (1.0 / rotation_matrix[0, 0], rotation_matrix[0, 1],
           rotation_matrix[0, 2], rotation_matrix[1, 0],
           1.0 / rotation_matrix[1, 1], rotation_matrix[1, 2],
           rotation_matrix[2, 0], rotation_matrix[2, 1],
           1.0 / rotation_matrix[2, 2], translation_array[0, 0],
           translation_array[0, 1], -translation_array[0, 2]))
    text_file.write("FixedParameters: %.9f %.9f %.9f\n" %
                    (points_moving_barycenter[0], points_moving_barycenter[1],
                     points_moving_barycenter[2]))
    text_file.close()

    # Apply affine transformation: straight --> template
    sct.printv('\nApply affine transformation: straight --> template...',
               verbose)
    sct.run(
        'sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt -d template.nii -o warp_curve2straightAffine.nii.gz'
    )
    sct.run(
        'sct_apply_transfo -i data_rpi.nii -o data_rpi_straight2templateAffine.nii -d template.nii -w warp_curve2straightAffine.nii.gz'
    )
    sct.run(
        'sct_apply_transfo -i segmentation_rpi.nii.gz -o segmentation_rpi_straight2templateAffine.nii.gz -d template.nii -w warp_curve2straightAffine.nii.gz -x linear'
    )

    # threshold to 0.5
    nii = Image('segmentation_rpi_straight2templateAffine.nii.gz')
    data = nii.data
    data[data < 0.5] = 0
    nii.data = data
    nii.setFileName('segmentation_rpi_straight2templateAffine_th.nii.gz')
    nii.save()
    # find min-max of anat2template (for subsequent cropping)
    zmin_template, zmax_template = find_zmin_zmax(
        'segmentation_rpi_straight2templateAffine_th.nii.gz')

    # crop template in z-direction (for faster processing)
    sct.printv('\nCrop data in template space (for faster processing)...',
               verbose)
    sct.run(
        'sct_crop_image -i template.nii -o template_crop.nii -dim 2 -start ' +
        str(zmin_template) + ' -end ' + str(zmax_template))
    sct.run(
        'sct_crop_image -i template_seg.nii.gz -o template_seg_crop.nii.gz -dim 2 -start '
        + str(zmin_template) + ' -end ' + str(zmax_template))
    sct.run(
        'sct_crop_image -i data_rpi_straight2templateAffine.nii -o data_rpi_straight2templateAffine_crop.nii -dim 2 -start '
        + str(zmin_template) + ' -end ' + str(zmax_template))
    sct.run(
        'sct_crop_image -i segmentation_rpi_straight2templateAffine.nii.gz -o segmentation_rpi_straight2templateAffine_crop.nii.gz -dim 2 -start '
        + str(zmin_template) + ' -end ' + str(zmax_template))
    # sub-sample in z-direction
    sct.printv('\nSub-sample in z-direction (for faster processing)...',
               verbose)
    sct.run(
        'sct_resample -i template_crop.nii -o template_crop_r.nii -f 1x1x' +
        zsubsample, verbose)
    sct.run(
        'sct_resample -i template_seg_crop.nii.gz -o template_seg_crop_r.nii.gz -f 1x1x'
        + zsubsample, verbose)
    sct.run(
        'sct_resample -i data_rpi_straight2templateAffine_crop.nii -o data_rpi_straight2templateAffine_crop_r.nii -f 1x1x'
        + zsubsample, verbose)
    sct.run(
        'sct_resample -i segmentation_rpi_straight2templateAffine_crop.nii.gz -o segmentation_rpi_straight2templateAffine_crop_r.nii.gz -f 1x1x'
        + zsubsample, verbose)

    # Registration straight spinal cord to template
    sct.printv('\nRegister straight spinal cord to template...', verbose)

    # loop across registration steps
    warp_forward = []
    warp_inverse = []
    for i_step in range(1, len(paramreg.steps) + 1):
        sct.printv(
            '\nEstimate transformation for step #' + str(i_step) + '...',
            verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = 'data_rpi_straight2templateAffine_crop_r.nii'
            dest = 'template_crop_r.nii'
            interp_step = 'linear'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = 'segmentation_rpi_straight2templateAffine_crop_r.nii.gz'
            dest = 'template_seg_crop_r.nii.gz'
            interp_step = 'nn'
        else:
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>1, apply warp_forward_concat to the src image to be used
        if i_step > 1:
            # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            sct.run(
                'sct_apply_transfo -i ' + src + ' -d ' + dest + ' -w ' +
                ','.join(warp_forward) + ' -o ' + sct.add_suffix(src, '_reg') +
                ' -x ' + interp_step, verbose)
            src = sct.add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg,
                                                      param, str(i_step))
        warp_forward.append(warp_forward_out)
        warp_inverse.append(warp_inverse_out)

    # Concatenate transformations:
    sct.printv('\nConcatenate transformations: anat --> template...', verbose)
    sct.run(
        'sct_concat_transfo -w warp_curve2straightAffine.nii.gz,' +
        ','.join(warp_forward) +
        ' -d template.nii -o warp_anat2template.nii.gz', verbose)
    # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    warp_inverse.reverse()
    sct.run(
        'sct_concat_transfo -w ' + ','.join(warp_inverse) +
        ',-straight2templateAffine.txt,warp_straight2curve.nii.gz -d data.nii -o warp_template2anat.nii.gz',
        verbose)

    # Apply warping fields to anat and template
    if output_type == 1:
        sct.run(
            'sct_apply_transfo -i template.nii -o template2anat.nii.gz -d data.nii -w warp_template2anat.nii.gz -c 1',
            verbose)
        sct.run(
            'sct_apply_transfo -i data.nii -o anat2template.nii.gz -d template.nii -w warp_anat2template.nii.gz -c 1',
            verbose)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp + '/warp_template2anat.nii.gz',
                             'warp_template2anat.nii.gz', verbose)
    sct.generate_output_file(path_tmp + '/warp_anat2template.nii.gz',
                             'warp_anat2template.nii.gz', verbose)
    if output_type == 1:
        sct.generate_output_file(path_tmp + '/template2anat.nii.gz',
                                 'template2anat' + ext_data, verbose)
        sct.generate_output_file(path_tmp + '/anat2template.nii.gz',
                                 'anat2template' + ext_data, verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.run('rm -rf ' + path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv(
        '\nFinished! Elapsed time: ' + str(int(round(elapsed_time))) + 's',
        verbose)

    # to view results
    sct.printv('\nTo view results, type:', verbose)
    sct.printv('fslview ' + fname_data + ' template2anat -b 0,4000 &', verbose,
               'info')
    sct.printv('fslview ' + fname_template + ' -b 0,5000 anat2template &\n',
               verbose, 'info')
def main():

    # get default parameters
    step1 = Paramreg(step='1', type='seg', algo='slicereg', metric='MeanSquares', iter='10')
    step2 = Paramreg(step='2', type='im', algo='syn', metric='MI', iter='3')
    # step1 = Paramreg()
    paramreg = ParamregMultiStep([step1, step2])

    # step1 = Paramreg_step(step='1', type='seg', algo='bsplinesyn', metric='MeanSquares', iter='10', shrink='1', smooth='0', gradStep='0.5')
    # step2 = Paramreg_step(step='2', type='im', algo='syn', metric='MI', iter='10', shrink='1', smooth='0', gradStep='0.5')
    # paramreg = ParamregMultiStep([step1, step2])

    # Initialize the parser
    parser = Parser(__file__)
    parser.usage.set_description('Register anatomical image to the template.')
    parser.add_option(name="-i",
                      type_value="file",
                      description="Anatomical image.",
                      mandatory=True,
                      example="anat.nii.gz")
    parser.add_option(name="-s",
                      type_value="file",
                      description="Spinal cord segmentation.",
                      mandatory=True,
                      example="anat_seg.nii.gz")
    parser.add_option(name="-l",
                      type_value="file",
                      description="Labels. See: http://sourceforge.net/p/spinalcordtoolbox/wiki/create_labels/",
                      mandatory=True,
                      default_value='',
                      example="anat_labels.nii.gz")
    parser.add_option(name="-t",
                      type_value="folder",
                      description="Path to MNI-Poly-AMU template.",
                      mandatory=False,
                      default_value=param.path_template)
    parser.add_option(name="-p",
                      type_value=[[':'], 'str'],
                      description="""Parameters for registration (see sct_register_multimodal). Default:\n--\nstep=1\ntype="""+paramreg.steps['1'].type+"""\nalgo="""+paramreg.steps['1'].algo+"""\nmetric="""+paramreg.steps['1'].metric+"""\npoly="""+paramreg.steps['1'].poly+"""\n--\nstep=2\ntype="""+paramreg.steps['2'].type+"""\nalgo="""+paramreg.steps['2'].algo+"""\nmetric="""+paramreg.steps['2'].metric+"""\niter="""+paramreg.steps['2'].iter+"""\nshrink="""+paramreg.steps['2'].shrink+"""\nsmooth="""+paramreg.steps['2'].smooth+"""\ngradStep="""+paramreg.steps['2'].gradStep+"""\n--""",
                      mandatory=False,
                      example="step=2,type=seg,algo=bsplinesyn,metric=MeanSquares,iter=5,shrink=2:step=3,type=im,algo=syn,metric=MI,iter=5,shrink=1,gradStep=0.3")
    parser.add_option(name="-r",
                      type_value="multiple_choice",
                      description="""Remove temporary files.""",
                      mandatory=False,
                      default_value='1',
                      example=['0', '1'])
    parser.add_option(name="-v",
                      type_value="multiple_choice",
                      description="""Verbose. 0: nothing. 1: basic. 2: extended.""",
                      mandatory=False,
                      default_value=param.verbose,
                      example=['0', '1', '2'])
    if param.debug:
        print '\n*** WARNING: DEBUG MODE ON ***\n'
        fname_data = '/Users/julien/data/temp/sct_example_data/t2/t2.nii.gz'
        fname_landmarks = '/Users/julien/data/temp/sct_example_data/t2/labels.nii.gz'
        fname_seg = '/Users/julien/data/temp/sct_example_data/t2/t2_seg.nii.gz'
        path_template = param.path_template
        remove_temp_files = 0
        verbose = 2
        # speed = 'superfast'
        #param_reg = '2,BSplineSyN,0.6,MeanSquares'
    else:
        arguments = parser.parse(sys.argv[1:])

        # get arguments
        fname_data = arguments['-i']
        fname_seg = arguments['-s']
        fname_landmarks = arguments['-l']
        path_template = arguments['-t']
        remove_temp_files = int(arguments['-r'])
        verbose = int(arguments['-v'])
        if '-p' in arguments:
            paramreg_user = arguments['-p']
            # update registration parameters
            for paramStep in paramreg_user:
                paramreg.addStep(paramStep)

    # initialize other parameters
    file_template = param.file_template
    file_template_label = param.file_template_label
    file_template_seg = param.file_template_seg
    output_type = param.output_type
    zsubsample = param.zsubsample
    # smoothing_sigma = param.smoothing_sigma

    # start timer
    start_time = time.time()

    # get absolute path - TO DO: remove! NEVER USE ABSOLUTE PATH...
    path_template = os.path.abspath(path_template)

    # get fname of the template + template objects
    fname_template = sct.slash_at_the_end(path_template, 1)+file_template
    fname_template_label = sct.slash_at_the_end(path_template, 1)+file_template_label
    fname_template_seg = sct.slash_at_the_end(path_template, 1)+file_template_seg

    # check file existence
    sct.printv('\nCheck template files...')
    sct.check_file_exist(fname_template, verbose)
    sct.check_file_exist(fname_template_label, verbose)
    sct.check_file_exist(fname_template_seg, verbose)

    # print arguments
    sct.printv('\nCheck parameters:', verbose)
    sct.printv('.. Data:                 '+fname_data, verbose)
    sct.printv('.. Landmarks:            '+fname_landmarks, verbose)
    sct.printv('.. Segmentation:         '+fname_seg, verbose)
    sct.printv('.. Path template:        '+path_template, verbose)
    sct.printv('.. Output type:          '+str(output_type), verbose)
    sct.printv('.. Remove temp files:    '+str(remove_temp_files), verbose)

    sct.printv('\nParameters for registration:')
    for pStep in range(1, len(paramreg.steps)+1):
        sct.printv('Step #'+paramreg.steps[str(pStep)].step, verbose)
        sct.printv('.. Type #'+paramreg.steps[str(pStep)].type, verbose)
        sct.printv('.. Algorithm................ '+paramreg.steps[str(pStep)].algo, verbose)
        sct.printv('.. Metric................... '+paramreg.steps[str(pStep)].metric, verbose)
        sct.printv('.. Number of iterations..... '+paramreg.steps[str(pStep)].iter, verbose)
        sct.printv('.. Shrink factor............ '+paramreg.steps[str(pStep)].shrink, verbose)
        sct.printv('.. Smoothing factor......... '+paramreg.steps[str(pStep)].smooth, verbose)
        sct.printv('.. Gradient step............ '+paramreg.steps[str(pStep)].gradStep, verbose)
        sct.printv('.. Degree of polynomial..... '+paramreg.steps[str(pStep)].poly, verbose)

    path_data, file_data, ext_data = sct.extract_fname(fname_data)

    sct.printv('\nCheck input labels...')
    # check if label image contains coherent labels
    image_label = Image(fname_landmarks)
    # -> all labels must be different
    labels = image_label.getNonZeroCoordinates(sorting='value')
    hasDifferentLabels = True
    for lab in labels:
        for otherlabel in labels:
            if lab != otherlabel and lab.hasEqualValue(otherlabel):
                hasDifferentLabels = False
                break
    if not hasDifferentLabels:
        sct.printv('ERROR: Wrong landmarks input. All labels must be different.', verbose, 'error')
    # all labels must be available in tempalte
    image_label_template = Image(fname_template_label)
    labels_template = image_label_template.getNonZeroCoordinates(sorting='value')
    if labels[-1].value > labels_template[-1].value:
        sct.printv('ERROR: Wrong landmarks input. Labels must have correspondance in tempalte space. \nLabel max '
                   'provided: ' + str(labels[-1].value) + '\nLabel max from template: ' +
                   str(labels_template[-1].value), verbose, 'error')


    # create temporary folder
    sct.printv('\nCreate temporary folder...', verbose)
    path_tmp = 'tmp.'+time.strftime("%y%m%d%H%M%S")
    status, output = sct.run('mkdir '+path_tmp)

    # copy files to temporary folder
    sct.printv('\nCopy files...', verbose)
    sct.run('isct_c3d '+fname_data+' -o '+path_tmp+'/data.nii')
    sct.run('isct_c3d '+fname_landmarks+' -o '+path_tmp+'/landmarks.nii.gz')
    sct.run('isct_c3d '+fname_seg+' -o '+path_tmp+'/segmentation.nii.gz')
    sct.run('isct_c3d '+fname_template+' -o '+path_tmp+'/template.nii')
    sct.run('isct_c3d '+fname_template_label+' -o '+path_tmp+'/template_labels.nii.gz')
    sct.run('isct_c3d '+fname_template_seg+' -o '+path_tmp+'/template_seg.nii.gz')

    # go to tmp folder
    os.chdir(path_tmp)

    # resample data to 1mm isotropic
    sct.printv('\nResample data to 1mm isotropic...', verbose)
    sct.run('isct_c3d data.nii -resample-mm 1.0x1.0x1.0mm -interpolation Linear -o datar.nii')
    sct.run('isct_c3d segmentation.nii.gz -resample-mm 1.0x1.0x1.0mm -interpolation NearestNeighbor -o segmentationr.nii.gz')
    # N.B. resampling of labels is more complicated, because they are single-point labels, therefore resampling with neighrest neighbour can make them disappear. Therefore a more clever approach is required.
    resample_labels('landmarks.nii.gz', 'datar.nii', 'landmarksr.nii.gz')
    # # TODO
    # sct.run('sct_label_utils -i datar.nii -t create -x 124,186,19,2:129,98,23,8 -o landmarksr.nii.gz')

    # Change orientation of input images to RPI
    sct.printv('\nChange orientation of input images to RPI...', verbose)
    set_orientation('datar.nii', 'RPI', 'data_rpi.nii')
    set_orientation('landmarksr.nii.gz', 'RPI', 'landmarks_rpi.nii.gz')
    set_orientation('segmentationr.nii.gz', 'RPI', 'segmentation_rpi.nii.gz')

    # # Change orientation of input images to RPI
    # sct.printv('\nChange orientation of input images to RPI...', verbose)
    # set_orientation('data.nii', 'RPI', 'data_rpi.nii')
    # set_orientation('landmarks.nii.gz', 'RPI', 'landmarks_rpi.nii.gz')
    # set_orientation('segmentation.nii.gz', 'RPI', 'segmentation_rpi.nii.gz')

    # get landmarks in native space
    # crop segmentation
    # output: segmentation_rpi_crop.nii.gz
    sct.run('sct_crop_image -i segmentation_rpi.nii.gz -o segmentation_rpi_crop.nii.gz -dim 2 -bzmax')

    # straighten segmentation
    sct.printv('\nStraighten the spinal cord using centerline/segmentation...', verbose)
    sct.run('sct_straighten_spinalcord -i segmentation_rpi_crop.nii.gz -c segmentation_rpi_crop.nii.gz -r 0 -v '+str(verbose), verbose)
    # re-define warping field using non-cropped space (to avoid issue #367)
    sct.run('sct_concat_transfo -w warp_straight2curve.nii.gz -d data_rpi.nii -o warp_straight2curve.nii.gz')

    # Label preparation:
    # --------------------------------------------------------------------------------
    # Remove unused label on template. Keep only label present in the input label image
    sct.printv('\nRemove unused label on template. Keep only label present in the input label image...', verbose)
    sct.run('sct_label_utils -t remove -i template_labels.nii.gz -o template_label.nii.gz -r landmarks_rpi.nii.gz')

    # Make sure landmarks are INT
    sct.printv('\nConvert landmarks to INT...', verbose)
    sct.run('isct_c3d template_label.nii.gz -type int -o template_label.nii.gz', verbose)

    # Create a cross for the template labels - 5 mm
    sct.printv('\nCreate a 5 mm cross for the template labels...', verbose)
    sct.run('sct_label_utils -t cross -i template_label.nii.gz -o template_label_cross.nii.gz -c 5')

    # Create a cross for the input labels and dilate for straightening preparation - 5 mm
    sct.printv('\nCreate a 5mm cross for the input labels and dilate for straightening preparation...', verbose)
    sct.run('sct_label_utils -t cross -i landmarks_rpi.nii.gz -o landmarks_rpi_cross3x3.nii.gz -c 5 -d')

    # Apply straightening to labels
    sct.printv('\nApply straightening to labels...', verbose)
    sct.run('sct_apply_transfo -i landmarks_rpi_cross3x3.nii.gz -o landmarks_rpi_cross3x3_straight.nii.gz -d segmentation_rpi_crop_straight.nii.gz -w warp_curve2straight.nii.gz -x nn')

    # Convert landmarks from FLOAT32 to INT
    sct.printv('\nConvert landmarks from FLOAT32 to INT...', verbose)
    sct.run('isct_c3d landmarks_rpi_cross3x3_straight.nii.gz -type int -o landmarks_rpi_cross3x3_straight.nii.gz')

    # Remove labels that do not correspond with each others.
    sct.printv('\nRemove labels that do not correspond with each others.', verbose)
    sct.run('sct_label_utils -t remove-symm -i landmarks_rpi_cross3x3_straight.nii.gz -o landmarks_rpi_cross3x3_straight.nii.gz,template_label_cross.nii.gz -r template_label_cross.nii.gz')

    # Estimate affine transfo: straight --> template (landmark-based)'
    sct.printv('\nEstimate affine transfo: straight anat --> template (landmark-based)...', verbose)
    # converting landmarks straight and curved to physical coordinates
    image_straight = Image('landmarks_rpi_cross3x3_straight.nii.gz')
    landmark_straight = image_straight.getNonZeroCoordinates(sorting='value')
    image_template = Image('template_label_cross.nii.gz')
    landmark_template = image_template.getNonZeroCoordinates(sorting='value')
    # Reorganize landmarks
    points_fixed, points_moving = [], []
    landmark_straight_mean = []
    for coord in landmark_straight:
        if coord.value not in [c.value for c in landmark_straight_mean]:
            temp_landmark = coord
            temp_number = 1
            for other_coord in landmark_straight:
                if coord.hasEqualValue(other_coord) and coord != other_coord:
                    temp_landmark += other_coord
                    temp_number += 1
            landmark_straight_mean.append(temp_landmark / temp_number)

    for coord in landmark_straight_mean:
        point_straight = image_straight.transfo_pix2phys([[coord.x, coord.y, coord.z]])
        points_moving.append([point_straight[0][0], point_straight[0][1], point_straight[0][2]])
    for coord in landmark_template:
        point_template = image_template.transfo_pix2phys([[coord.x, coord.y, coord.z]])
        points_fixed.append([point_template[0][0], point_template[0][1], point_template[0][2]])

    # Register curved landmarks on straight landmarks based on python implementation
    sct.printv('\nComputing rigid transformation (algo=translation-scaling-z) ...', verbose)
    import msct_register_landmarks
    (rotation_matrix, translation_array, points_moving_reg, points_moving_barycenter) = \
        msct_register_landmarks.getRigidTransformFromLandmarks(
            points_fixed, points_moving, constraints='translation-scaling-z', show=False)

    # writing rigid transformation file
    text_file = open("straight2templateAffine.txt", "w")
    text_file.write("#Insight Transform File V1.0\n")
    text_file.write("#Transform 0\n")
    text_file.write("Transform: FixedCenterOfRotationAffineTransform_double_3_3\n")
    text_file.write("Parameters: %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f\n" % (
        1.0/rotation_matrix[0, 0], rotation_matrix[0, 1],     rotation_matrix[0, 2],
        rotation_matrix[1, 0],     1.0/rotation_matrix[1, 1], rotation_matrix[1, 2],
        rotation_matrix[2, 0],     rotation_matrix[2, 1],     1.0/rotation_matrix[2, 2],
        translation_array[0, 0],   translation_array[0, 1],   -translation_array[0, 2]))
    text_file.write("FixedParameters: %.9f %.9f %.9f\n" % (points_moving_barycenter[0],
                                                           points_moving_barycenter[1],
                                                           points_moving_barycenter[2]))
    text_file.close()

    # Apply affine transformation: straight --> template
    sct.printv('\nApply affine transformation: straight --> template...', verbose)
    sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt -d template.nii -o warp_curve2straightAffine.nii.gz')
    sct.run('sct_apply_transfo -i data_rpi.nii -o data_rpi_straight2templateAffine.nii -d template.nii -w warp_curve2straightAffine.nii.gz')
    sct.run('sct_apply_transfo -i segmentation_rpi.nii.gz -o segmentation_rpi_straight2templateAffine.nii.gz -d template.nii -w warp_curve2straightAffine.nii.gz -x linear')

    # threshold to 0.5
    nii = Image('segmentation_rpi_straight2templateAffine.nii.gz')
    data = nii.data
    data[data < 0.5] = 0
    nii.data = data
    nii.setFileName('segmentation_rpi_straight2templateAffine_th.nii.gz')
    nii.save()
    # find min-max of anat2template (for subsequent cropping)
    zmin_template, zmax_template = find_zmin_zmax('segmentation_rpi_straight2templateAffine_th.nii.gz')

    # crop template in z-direction (for faster processing)
    sct.printv('\nCrop data in template space (for faster processing)...', verbose)
    sct.run('sct_crop_image -i template.nii -o template_crop.nii -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    sct.run('sct_crop_image -i template_seg.nii.gz -o template_seg_crop.nii.gz -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    sct.run('sct_crop_image -i data_rpi_straight2templateAffine.nii -o data_rpi_straight2templateAffine_crop.nii -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    sct.run('sct_crop_image -i segmentation_rpi_straight2templateAffine.nii.gz -o segmentation_rpi_straight2templateAffine_crop.nii.gz -dim 2 -start '+str(zmin_template)+' -end '+str(zmax_template))
    # sub-sample in z-direction
    sct.printv('\nSub-sample in z-direction (for faster processing)...', verbose)
    sct.run('sct_resample -i template_crop.nii -o template_crop_r.nii -f 1x1x'+zsubsample, verbose)
    sct.run('sct_resample -i template_seg_crop.nii.gz -o template_seg_crop_r.nii.gz -f 1x1x'+zsubsample, verbose)
    sct.run('sct_resample -i data_rpi_straight2templateAffine_crop.nii -o data_rpi_straight2templateAffine_crop_r.nii -f 1x1x'+zsubsample, verbose)
    sct.run('sct_resample -i segmentation_rpi_straight2templateAffine_crop.nii.gz -o segmentation_rpi_straight2templateAffine_crop_r.nii.gz -f 1x1x'+zsubsample, verbose)

    # Registration straight spinal cord to template
    sct.printv('\nRegister straight spinal cord to template...', verbose)

    # loop across registration steps
    warp_forward = []
    warp_inverse = []
    for i_step in range(1, len(paramreg.steps)+1):
        sct.printv('\nEstimate transformation for step #'+str(i_step)+'...', verbose)
        # identify which is the src and dest
        if paramreg.steps[str(i_step)].type == 'im':
            src = 'data_rpi_straight2templateAffine_crop_r.nii'
            dest = 'template_crop_r.nii'
            interp_step = 'linear'
        elif paramreg.steps[str(i_step)].type == 'seg':
            src = 'segmentation_rpi_straight2templateAffine_crop_r.nii.gz'
            dest = 'template_seg_crop_r.nii.gz'
            interp_step = 'nn'
        else:
            sct.printv('ERROR: Wrong image type.', 1, 'error')
        # if step>1, apply warp_forward_concat to the src image to be used
        if i_step > 1:
            # sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            sct.run('sct_apply_transfo -i '+src+' -d '+dest+' -w '+','.join(warp_forward)+' -o '+sct.add_suffix(src, '_reg')+' -x '+interp_step, verbose)
            src = sct.add_suffix(src, '_reg')
        # register src --> dest
        warp_forward_out, warp_inverse_out = register(src, dest, paramreg, param, str(i_step))
        warp_forward.append(warp_forward_out)
        warp_inverse.append(warp_inverse_out)

    # Concatenate transformations:
    sct.printv('\nConcatenate transformations: anat --> template...', verbose)
    sct.run('sct_concat_transfo -w warp_curve2straightAffine.nii.gz,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    # sct.run('sct_concat_transfo -w warp_curve2straight.nii.gz,straight2templateAffine.txt,'+','.join(warp_forward)+' -d template.nii -o warp_anat2template.nii.gz', verbose)
    warp_inverse.reverse()
    sct.run('sct_concat_transfo -w '+','.join(warp_inverse)+',-straight2templateAffine.txt,warp_straight2curve.nii.gz -d data.nii -o warp_template2anat.nii.gz', verbose)

    # Apply warping fields to anat and template
    if output_type == 1:
        sct.run('sct_apply_transfo -i template.nii -o template2anat.nii.gz -d data.nii -w warp_template2anat.nii.gz -c 1', verbose)
        sct.run('sct_apply_transfo -i data.nii -o anat2template.nii.gz -d template.nii -w warp_anat2template.nii.gz -c 1', verbose)

    # come back to parent folder
    os.chdir('..')

   # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp+'/warp_template2anat.nii.gz', 'warp_template2anat.nii.gz', verbose)
    sct.generate_output_file(path_tmp+'/warp_anat2template.nii.gz', 'warp_anat2template.nii.gz', verbose)
    if output_type == 1:
        sct.generate_output_file(path_tmp+'/template2anat.nii.gz', 'template2anat'+ext_data, verbose)
        sct.generate_output_file(path_tmp+'/anat2template.nii.gz', 'anat2template'+ext_data, verbose)

    # Delete temporary files
    if remove_temp_files:
        sct.printv('\nDelete temporary files...', verbose)
        sct.run('rm -rf '+path_tmp)

    # display elapsed time
    elapsed_time = time.time() - start_time
    sct.printv('\nFinished! Elapsed time: '+str(int(round(elapsed_time)))+'s', verbose)

    # to view results
    sct.printv('\nTo view results, type:', verbose)
    sct.printv('fslview '+fname_data+' template2anat -b 0,4000 &', verbose, 'info')
    sct.printv('fslview '+fname_template+' -b 0,5000 anat2template &\n', verbose, 'info')
zsum = np.sum(np.sum(data_cord, 0), 0)
zmin_cord = np.min(np.nonzero(zsum))
zmax_cord = np.max(np.nonzero(zsum))

# duplicate WM and GM atlas towards the top and bottom slices to match the cord template
# bottom slices
for iz in range(zmin_cord, zmin_wm):
    data_wm[:, :, iz] = data_wm[:, :, zmin_wm]
    data_gm[:, :, iz] = data_gm[:, :, zmin_wm]
# top slices
for iz in range(zmax_wm, zmax_cord):
    data_wm[:, :, iz] = data_wm[:, :, zmax_wm]
    data_gm[:, :, iz] = data_gm[:, :, zmax_wm]

# save modified atlases
im_wm.setFileName('wm_ext.nii.gz')
im_wm.data = data_wm
im_wm.save()
im_gm.setFileName('gm_ext.nii.gz')
im_gm.data = data_gm
im_gm.save()

# sum modified wm/gm
data_wmgm = data_wm + data_gm

# save wm/gm
im_wm.setFileName('wmgm_ext.nii.gz')
im_wm.data = data_wmgm
im_wm.save()

# register wmgm --> cord
Exemplo n.º 34
0
def interpolate_im_to_ref(im_input, im_input_sc, new_res=0.3, sq_size_size_mm=22.5, interpolation_mode=3):
    nx, ny, nz, nt, px, py, pz, pt = im_input.dim

    im_input_sc = im_input_sc.copy()
    im_input= im_input.copy()

    # keep only spacing and origin in qform to avoid rotation issues
    input_qform = im_input.hdr.get_qform()
    for i in range(4):
        for j in range(4):
            if i!=j and j!=3:
                input_qform[i, j] = 0

    im_input.hdr.set_qform(input_qform)
    im_input.hdr.set_sform(input_qform)
    im_input_sc.hdr = im_input.hdr

    sq_size = int(sq_size_size_mm/new_res)
    # create a reference image : square of ones
    im_ref = Image(np.ones((sq_size, sq_size, 1), dtype=np.int), dim=(sq_size, sq_size, 1, 0, new_res, new_res, pz, 0), orientation='RPI')

    # copy input qform matrix to reference image
    im_ref.hdr.set_qform(im_input.hdr.get_qform())
    im_ref.hdr.set_sform(im_input.hdr.get_sform())

    # set correct header to reference image
    im_ref.hdr.set_data_shape((sq_size, sq_size, 1))
    im_ref.hdr.set_zooms((new_res, new_res, pz))

    # save image to set orientation to RPI (not properly done at the creation of the image)
    fname_ref = 'im_ref.nii.gz'
    im_ref.setFileName(fname_ref)
    im_ref.save()
    im_ref = set_orientation(im_ref, 'RPI', fname_out=fname_ref)

    # set header origin to zero to get physical coordinates of the center of the square
    im_ref.hdr.as_analyze_map()['qoffset_x'] = 0
    im_ref.hdr.as_analyze_map()['qoffset_y'] = 0
    im_ref.hdr.as_analyze_map()['qoffset_z'] = 0
    im_ref.hdr.set_sform(im_ref.hdr.get_qform())
    im_ref.hdr.set_qform(im_ref.hdr.get_qform())
    [[x_square_center_phys, y_square_center_phys, z_square_center_phys]] = im_ref.transfo_pix2phys(coordi=[[int(sq_size / 2), int(sq_size / 2), 0]])

    list_interpolate_images = []
    # iterate on z dimension of input image
    for iz in range(nz):
        # copy reference image: one reference image per slice
        im_ref_slice_iz = im_ref.copy()

        # get center of mass of SC for slice iz
        x_seg, y_seg = (im_input_sc.data[:, :, iz] > 0).nonzero()
        x_center, y_center = np.mean(x_seg), np.mean(y_seg)
        [[x_center_phys, y_center_phys, z_center_phys]] = im_input_sc.transfo_pix2phys(coordi=[[x_center, y_center, iz]])

        # center reference image on SC for slice iz
        im_ref_slice_iz.hdr.as_analyze_map()['qoffset_x'] = x_center_phys - x_square_center_phys
        im_ref_slice_iz.hdr.as_analyze_map()['qoffset_y'] = y_center_phys - y_square_center_phys
        im_ref_slice_iz.hdr.as_analyze_map()['qoffset_z'] = z_center_phys
        im_ref_slice_iz.hdr.set_sform(im_ref_slice_iz.hdr.get_qform())
        im_ref_slice_iz.hdr.set_qform(im_ref_slice_iz.hdr.get_qform())

        # interpolate input image to reference image
        im_input_interpolate_iz = im_input.interpolate_from_image(im_ref_slice_iz, interpolation_mode=interpolation_mode, border='nearest')
        # reshape data to 2D if needed
        if len(im_input_interpolate_iz.data.shape) == 3:
            im_input_interpolate_iz.data = im_input_interpolate_iz.data.reshape(im_input_interpolate_iz.data.shape[:-1])
        # add slice to list
        list_interpolate_images.append(im_input_interpolate_iz)

    return list_interpolate_images
def compute_dti(fname_in, fname_bvals, fname_bvecs, prefix, method, file_mask):
    """
    Compute DTI.
    :param fname_in: input 4d file.
    :param bvals: bvals txt file
    :param bvecs: bvecs txt file
    :param prefix: output prefix. Example: "dti_"
    :param method: algo for computing dti
    :return: True/False
    """
    # Open file.
    from msct_image import Image
    nii = Image(fname_in)
    data = nii.data
    print('data.shape (%d, %d, %d, %d)' % data.shape)

    # open bvecs/bvals
    from dipy.io import read_bvals_bvecs
    bvals, bvecs = read_bvals_bvecs(fname_bvals, fname_bvecs)
    from dipy.core.gradients import gradient_table
    gtab = gradient_table(bvals, bvecs)

    # mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image.
    if not file_mask == '':
        printv('Open mask file...', param.verbose)
        # open mask file
        nii_mask = Image(file_mask)
        mask = nii_mask.data

    # fit tensor model
    printv('Computing tensor using "' + method + '" method...', param.verbose)
    import dipy.reconst.dti as dti
    if method == 'standard':
        tenmodel = dti.TensorModel(gtab)
        if file_mask == '':
            tenfit = tenmodel.fit(data)
        else:
            tenfit = tenmodel.fit(data, mask)
    elif method == 'restore':
        import dipy.denoise.noise_estimate as ne
        sigma = ne.estimate_sigma(data)
        dti_restore = dti.TensorModel(gtab, fit_method='RESTORE', sigma=sigma)
        if file_mask == '':
            tenfit = dti_restore.fit(data)
        else:
            tenfit = dti_restore.fit(data, mask)

    # Compute metrics
    printv('Computing metrics...', param.verbose)
    # FA
    from dipy.reconst.dti import fractional_anisotropy
    nii.data = fractional_anisotropy(tenfit.evals)
    nii.setFileName(prefix + 'FA.nii.gz')
    nii.save('float32')
    # MD
    from dipy.reconst.dti import mean_diffusivity
    nii.data = mean_diffusivity(tenfit.evals)
    nii.setFileName(prefix + 'MD.nii.gz')
    nii.save('float32')
    # RD
    from dipy.reconst.dti import radial_diffusivity
    nii.data = radial_diffusivity(tenfit.evals)
    nii.setFileName(prefix + 'RD.nii.gz')
    nii.save('float32')
    # AD
    from dipy.reconst.dti import axial_diffusivity
    nii.data = axial_diffusivity(tenfit.evals)
    nii.setFileName(prefix + 'AD.nii.gz')
    nii.save('float32')

    return True
def extract_centerline(fname_segmentation, remove_temp_files, verbose = 0, algo_fitting = 'hanning', type_window = 'hanning', window_length = 80):

    # Extract path, file and extension
    fname_segmentation = os.path.abspath(fname_segmentation)
    path_data, file_data, ext_data = sct.extract_fname(fname_segmentation)

    # create temporary folder
    sct.printv('\nCreate temporary folder...', verbose)
    path_tmp = sct.slash_at_the_end('tmp.'+time.strftime("%y%m%d%H%M%S") + '_'+str(randint(1, 1000000)), 1)
    sct.run('mkdir '+path_tmp, verbose)

    # Copying input data to tmp folder
    sct.printv('\nCopying data to tmp folder...', verbose)
    sct.run('sct_convert -i '+fname_segmentation+' -o '+path_tmp+'segmentation.nii.gz', verbose)

    # go to tmp folder
    os.chdir(path_tmp)

    # Change orientation of the input centerline into RPI
    sct.printv('\nOrient centerline to RPI orientation...', verbose)
    # fname_segmentation_orient = 'segmentation_RPI.nii.gz'
    # BELOW DOES NOT WORK (JULIEN, 2015-10-17)
    # im_seg = Image(file_data+ext_data)
    # set_orientation(im_seg, 'RPI')
    # im_seg.setFileName(fname_segmentation_orient)
    # im_seg.save()
    sct.run('sct_image -i segmentation.nii.gz -setorient RPI -o segmentation_RPI.nii.gz', verbose)

    # Open segmentation volume
    sct.printv('\nOpen segmentation volume...', verbose)
    im_seg = Image('segmentation_RPI.nii.gz')
    data = im_seg.data

    # Get size of data
    sct.printv('\nGet data dimensions...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = im_seg.dim
    sct.printv('.. matrix size: '+str(nx)+' x '+str(ny)+' x '+str(nz), verbose)
    sct.printv('.. voxel size:  '+str(px)+'mm x '+str(py)+'mm x '+str(pz)+'mm', verbose)

    # # Get dimension
    # sct.printv('\nGet dimensions...', verbose)
    # nx, ny, nz, nt, px, py, pz, pt = im_seg.dim
    #
    # # Extract orientation of the input segmentation
    # orientation = get_orientation(im_seg)
    # sct.printv('\nOrientation of segmentation image: ' + orientation, verbose)
    #
    # sct.printv('\nOpen segmentation volume...', verbose)
    # data = im_seg.data
    # hdr = im_seg.hdr

    # Extract min and max index in Z direction
    X, Y, Z = (data>0).nonzero()
    min_z_index, max_z_index = min(Z), max(Z)
    x_centerline = [0 for i in range(0,max_z_index-min_z_index+1)]
    y_centerline = [0 for i in range(0,max_z_index-min_z_index+1)]
    z_centerline = [iz for iz in range(min_z_index, max_z_index+1)]
    # Extract segmentation points and average per slice
    for iz in range(min_z_index, max_z_index+1):
        x_seg, y_seg = (data[:,:,iz]>0).nonzero()
        x_centerline[iz-min_z_index] = np.mean(x_seg)
        y_centerline[iz-min_z_index] = np.mean(y_seg)
    for k in range(len(X)):
        data[X[k], Y[k], Z[k]] = 0

    # extract centerline and smooth it
    x_centerline_fit, y_centerline_fit, z_centerline_fit, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline('segmentation_RPI.nii.gz', type_window = type_window, window_length = window_length, algo_fitting = algo_fitting, verbose = verbose)

    if verbose == 2:
            import matplotlib.pyplot as plt

            #Creation of a vector x that takes into account the distance between the labels
            nz_nonz = len(z_centerline)
            x_display = [0 for i in range(x_centerline_fit.shape[0])]
            y_display = [0 for i in range(y_centerline_fit.shape[0])]
            for i in range(0, nz_nonz, 1):
                x_display[int(z_centerline[i]-z_centerline[0])] = x_centerline[i]
                y_display[int(z_centerline[i]-z_centerline[0])] = y_centerline[i]

            plt.figure(1)
            plt.subplot(2,1,1)
            plt.plot(z_centerline_fit, x_display, 'ro')
            plt.plot(z_centerline_fit, x_centerline_fit)
            plt.xlabel("Z")
            plt.ylabel("X")
            plt.title("x and x_fit coordinates")

            plt.subplot(2,1,2)
            plt.plot(z_centerline_fit, y_display, 'ro')
            plt.plot(z_centerline_fit, y_centerline_fit)
            plt.xlabel("Z")
            plt.ylabel("Y")
            plt.title("y and y_fit coordinates")
            plt.show()


    # Create an image with the centerline
    for iz in range(min_z_index, max_z_index+1):
        data[round(x_centerline_fit[iz-min_z_index]), round(y_centerline_fit[iz-min_z_index]), iz] = 1 # if index is out of bounds here for hanning: either the segmentation has holes or labels have been added to the file
    # Write the centerline image in RPI orientation
    # hdr.set_data_dtype('uint8') # set imagetype to uint8
    sct.printv('\nWrite NIFTI volumes...', verbose)
    im_seg.data = data
    im_seg.setFileName('centerline_RPI.nii.gz')
    im_seg.changeType('uint8')
    im_seg.save()

    sct.printv('\nSet to original orientation...', verbose)
    # get orientation of the input data
    im_seg_original = Image('segmentation.nii.gz')
    orientation = im_seg_original.orientation
    sct.run('sct_image -i centerline_RPI.nii.gz -setorient '+orientation+' -o centerline.nii.gz')

    # create a txt file with the centerline
    name_output_txt = 'centerline.txt'
    sct.printv('\nWrite text file...', verbose)
    file_results = open(name_output_txt, 'w')
    for i in range(min_z_index, max_z_index+1):
        file_results.write(str(int(i)) + ' ' + str(x_centerline_fit[i-min_z_index]) + ' ' + str(y_centerline_fit[i-min_z_index]) + '\n')
    file_results.close()

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp+'centerline.nii.gz', file_data+'_centerline.nii.gz')
    sct.generate_output_file(path_tmp+'centerline.txt', file_data+'_centerline.txt')

    # Remove temporary files
    if remove_temp_files:
        sct.printv('\nRemove temporary files...', verbose)
        sct.run('rm -rf '+path_tmp, verbose)

    return file_data+'_centerline.nii.gz'
class MultiLabelRegistration:
    def __init__(self,
                 fname_gm,
                 fname_wm,
                 path_template,
                 fname_warp_template2target,
                 param=None,
                 fname_warp_target2template=None,
                 apply_warp_template=0,
                 fname_template_dest=None):
        if param is None:
            self.param = Param()
        else:
            self.param = param
        self.im_gm = Image(fname_gm)
        self.im_wm = Image(fname_wm)
        self.path_template = sct.slash_at_the_end(path_template, 1)

        # get GM and WM files from template:
        fname_template_gm, fname_template_wm = None, None
        for fname in os.listdir(self.path_template + 'template/'):
            if 'gm' in fname.lower():
                fname_template_gm = self.path_template + 'template/' + fname
            elif 'wm' in fname.lower():
                fname_template_wm = self.path_template + 'template/' + fname
        if fname_template_gm is not None and fname_template_wm is not None:
            self.im_template_gm = Image(fname_template_gm)
            self.im_template_wm = Image(fname_template_wm)
            if fname_template_gm.split('/')[-1] == 'MNI-Poly-AMU_GM.nii.gz':
                self.template = 'MNI-Poly-AMU'
            elif fname_template_gm.split('/')[-1] == 'PAM50_gm.nii.gz':
                self.template = 'PAM50'
            else:
                self.template = 'custom'

        # template file in its original space:
        self.fname_template_dest = fname_template_dest

        # Previous warping fields:
        self.fname_warp_template2target = fname_warp_template2target
        self.fname_warp_target2template = fname_warp_target2template

        # new warping fields:
        self.fname_warp_template2gm = ''
        self.fname_warp_gm2template = ''

        # temporary fix - related to issue #871
        self.apply_warp_template = apply_warp_template

    def register(self):
        # accentuate separation WM/GM
        self.im_gm = thr_im(self.im_gm, 0.01, self.param.thr)
        self.im_wm = thr_im(self.im_wm, 0.01, self.param.thr)
        self.im_template_gm = thr_im(self.im_template_gm, 0.01, self.param.thr)
        self.im_template_wm = thr_im(self.im_template_wm, 0.01, self.param.thr)

        # create multilabel images:
        # copy GM images to keep header information
        im_automatic_ml = self.im_gm.copy()
        im_template_ml = self.im_template_gm.copy()

        # create multi-label segmentation with GM*200 + WM*100 (100 and 200 encoded in self.param.gap)
        im_automatic_ml.data = self.param.gap[
            1] * self.im_gm.data + self.param.gap[0] * self.im_wm.data
        im_template_ml.data = self.param.gap[
            1] * self.im_template_gm.data + self.param.gap[
                0] * self.im_template_wm.data

        # set new names
        fname_automatic_ml = 'multilabel_automatic_seg.nii.gz'
        fname_template_ml = 'multilabel_template_seg.nii.gz'
        im_automatic_ml.setFileName(fname_automatic_ml)
        im_template_ml.setFileName(fname_template_ml)

        # Create temporary folder and put files in it
        tmp_dir = sct.tmp_create()

        path_gm, file_gm, ext_gm = sct.extract_fname(fname_gm)
        path_warp_template2target, file_warp_template2target, ext_warp_template2target = sct.extract_fname(
            self.fname_warp_template2target)

        convert(fname_gm, tmp_dir + file_gm + ext_gm)
        convert(fname_warp_template,
                tmp_dir + file_warp_template2target + ext_warp_template2target,
                squeeze_data=0)
        if self.fname_warp_target2template is not None:
            path_warp_target2template, file_warp_target2template, ext_warp_target2template = sct.extract_fname(
                self.fname_warp_target2template)
            convert(self.fname_warp_target2template,
                    tmp_dir + file_warp_target2template +
                    ext_warp_target2template,
                    squeeze_data=0)

        os.chdir(tmp_dir)
        # save images
        im_automatic_ml.save()
        im_template_ml.save()

        # apply template2image warping field
        if self.apply_warp_template == 1:
            fname_template_ml_new = sct.add_suffix(fname_template_ml, '_r')
            sct.run('sct_apply_transfo -i ' + fname_template_ml + ' -d ' +
                    fname_automatic_ml + ' -w ' + file_warp_template2target +
                    ext_warp_template2target + ' -o ' + fname_template_ml_new)
            fname_template_ml = fname_template_ml_new

        nx, ny, nz, nt, px, py, pz, pt = im_automatic_ml.dim
        size_mask = int(22.5 / px)
        fname_mask = 'square_mask.nii.gz'
        sct.run('sct_create_mask -i ' + fname_automatic_ml +
                ' -p centerline,' + fname_automatic_ml + ' -f box -size ' +
                str(size_mask) + ' -o ' + fname_mask)

        fname_automatic_ml, xi, xf, yi, yf, zi, zf = crop_im(
            fname_automatic_ml, fname_mask)
        fname_template_ml, xi, xf, yi, yf, zi, zf = crop_im(
            fname_template_ml, fname_mask)

        #        fname_automatic_ml_smooth = sct.add_suffix(fname_automatic_ml, '_smooth')
        #        sct.run('sct_maths -i '+fname_automatic_ml+' -smooth '+str(self.param.smooth)+','+str(self.param.smooth)+',0 -o '+fname_automatic_ml_smooth)
        #        fname_automatic_ml = fname_automatic_ml_smooth

        path_automatic_ml, file_automatic_ml, ext_automatic_ml = sct.extract_fname(
            fname_automatic_ml)
        path_template_ml, file_template_ml, ext_template_ml = sct.extract_fname(
            fname_template_ml)

        # Register multilabel images together
        cmd_reg = 'sct_register_multimodal -i ' + fname_template_ml + ' -d ' + fname_automatic_ml + ' -param ' + self.param.param_reg
        if 'centermass' in self.param.param_reg:
            fname_template_ml_seg = sct.add_suffix(fname_template_ml, '_bin')
            sct.run('sct_maths -i ' + fname_template_ml + ' -bin 0 -o ' +
                    fname_template_ml_seg)

            fname_automatic_ml_seg = sct.add_suffix(fname_automatic_ml, '_bin')
            # sct.run('sct_maths -i '+fname_automatic_ml+' -thr 50 -o '+fname_automatic_ml_seg)
            sct.run('sct_maths -i ' + fname_automatic_ml + ' -bin 50 -o ' +
                    fname_automatic_ml_seg)

            cmd_reg += ' -iseg ' + fname_template_ml_seg + ' -dseg ' + fname_automatic_ml_seg

        sct.run(cmd_reg)
        fname_warp_multilabel_template2auto = 'warp_' + file_template_ml + '2' + file_automatic_ml + '.nii.gz'
        fname_warp_multilabel_auto2template = 'warp_' + file_automatic_ml + '2' + file_template_ml + '.nii.gz'

        self.fname_warp_template2gm = sct.extract_fname(
            self.fname_warp_template2target
        )[1] + '_reg_gm' + sct.extract_fname(
            self.fname_warp_template2target)[2]
        # fname_warp_multilabel_template2auto = pad_im(fname_warp_multilabel_template2auto, nx, ny, nz, xi, xf, yi, yf, zi, zf)
        # fname_warp_multilabel_auto2template = pad_im(fname_warp_multilabel_auto2template, nx, ny, nz, xi, xf, yi, yf, zi, zf)

        sct.run('sct_concat_transfo -w ' + file_warp_template2target +
                ext_warp_template2target + ',' +
                fname_warp_multilabel_template2auto + ' -d ' + file_gm +
                ext_gm + ' -o ' + self.fname_warp_template2gm)

        if self.fname_warp_target2template is not None:
            if self.fname_template_dest is None:
                path_script = os.path.dirname(__file__)
                path_sct = os.path.dirname(path_script)
                if self.template == 'MNI-Poly-AMU':
                    self.fname_template_dest = path_sct + '/data/MNI-Poly-AMU/template/MNI-Poly-AMU_T2.nii.gz'
                elif self.template == 'PAM50':
                    self.fname_template_dest = path_sct + '/data/PAM50/template/PAM50_t2.nii.gz'

            self.fname_warp_gm2template = sct.extract_fname(
                self.fname_warp_target2template
            )[1] + '_reg_gm' + sct.extract_fname(
                self.fname_warp_target2template)[2]
            sct.run('sct_concat_transfo -w ' +
                    fname_warp_multilabel_auto2template + ',' +
                    file_warp_target2template + ext_warp_target2template +
                    ' -d ' + self.fname_template_dest + ' -o ' +
                    self.fname_warp_gm2template)

        os.chdir('..')

        # sct.generate_output_file(tmp_dir+fname_warp_multilabel_template2auto, self.param.output_folder+'warp_template_multilabel2automatic_seg_multilabel.nii.gz')
        # sct.generate_output_file(tmp_dir+fname_warp_multilabel_auto2template, self.param.output_folder+'warp_automatic_seg_multilabel2template_multilabel.nii.gz')

        sct.generate_output_file(
            tmp_dir + self.fname_warp_template2gm,
            self.param.output_folder + self.fname_warp_template2gm)
        if self.fname_warp_target2template is not None:
            sct.generate_output_file(
                tmp_dir + self.fname_warp_gm2template,
                self.param.output_folder + self.fname_warp_gm2template)

        if self.param.qc:
            fname_grid_warped = visualize_warp(
                tmp_dir + fname_warp_multilabel_template2auto,
                rm_tmp=self.param.remove_tmp)
            path_grid_warped, file_grid_warped, ext_grid_warped = sct.extract_fname(
                fname_grid_warped)
            sct.generate_output_file(
                fname_grid_warped,
                self.param.output_folder + file_grid_warped + ext_grid_warped)

        if self.param.remove_tmp:
            sct.run('rm -rf ' + tmp_dir, error_exit='warning')

    def validation(self, fname_manual_gmseg, fname_sc_seg):
        path_manual_gmseg, file_manual_gmseg, ext_manual_gmseg = sct.extract_fname(
            fname_manual_gmseg)
        path_sc_seg, file_sc_seg, ext_sc_seg = sct.extract_fname(fname_sc_seg)

        # Create tmp folder and copy files in it
        tmp_dir = sct.tmp_create()
        sct.run('cp ' + fname_manual_gmseg + ' ' + tmp_dir +
                file_manual_gmseg + ext_manual_gmseg)
        sct.run('cp ' + fname_sc_seg + ' ' + tmp_dir + file_sc_seg +
                ext_sc_seg)
        sct.run('cp ' + self.param.output_folder +
                self.fname_warp_template2gm + ' ' + tmp_dir +
                self.fname_warp_template2gm)
        os.chdir(tmp_dir)

        sct.run('sct_warp_template -d ' + fname_manual_gmseg + ' -w ' +
                self.fname_warp_template2gm + ' -qc 0 -a 0')
        if 'MNI-Poly-AMU_GM.nii.gz' in os.listdir('label/template/'):
            im_new_template_gm = Image('label/template/MNI-Poly-AMU_GM.nii.gz')
            im_new_template_wm = Image('label/template/MNI-Poly-AMU_WM.nii.gz')
        else:
            im_new_template_gm = Image('label/template/PAM50_gm.nii.gz')
            im_new_template_wm = Image('label/template/PAM50_wm.nii.gz')

        im_new_template_gm = thr_im(im_new_template_gm, self.param.thr,
                                    self.param.thr)
        im_new_template_wm = thr_im(im_new_template_wm, self.param.thr,
                                    self.param.thr)

        self.im_template_gm = thr_im(self.im_template_gm, self.param.thr,
                                     self.param.thr)
        self.im_template_wm = thr_im(self.im_template_wm, self.param.thr,
                                     self.param.thr)

        fname_new_template_gm = 'new_template_gm.nii.gz'
        im_new_template_gm.setFileName(fname_new_template_gm)
        im_new_template_gm.save()

        fname_new_template_wm = 'new_template_wm.nii.gz'
        im_new_template_wm.setFileName(fname_new_template_wm)
        im_new_template_wm.save()

        fname_old_template_wm = 'old_template_wm.nii.gz'
        self.im_template_wm.setFileName(fname_old_template_wm)
        self.im_template_wm.save()

        fname_old_template_gm = 'old_template_gm.nii.gz'
        self.im_template_gm.setFileName(fname_old_template_gm)
        self.im_template_gm.save()

        fname_manual_wmseg = 'target_manual_wmseg.nii.gz'
        sct.run('sct_maths -i ' + file_sc_seg + ext_sc_seg + ' -sub ' +
                file_manual_gmseg + ext_manual_gmseg + ' -o ' +
                fname_manual_wmseg)

        # Compute Hausdorff distance
        status, output_old_hd = sct.run('sct_compute_hausdorff_distance -i ' +
                                        fname_old_template_gm + ' -r ' +
                                        file_manual_gmseg + ext_manual_gmseg +
                                        ' -t 1  -v 1')
        status, output_new_hd = sct.run('sct_compute_hausdorff_distance -i ' +
                                        fname_new_template_gm + ' -r ' +
                                        file_manual_gmseg + ext_manual_gmseg +
                                        ' -t 1  -v 1')

        hd_name = 'hd_md_multilabel_reg.txt'
        hd_fic = open(hd_name, 'w')
        hd_fic.write(
            'The "diff" columns are comparisons between regular template registration and corrected template registration according to SC internal structure\n'
            'Diff = metric_regular_reg - metric_corrected_reg\n')
        hd_fic.write('#Slice, HD, HD diff, MD, MD diff\n')

        no_ref_slices = []

        init_hd = "Hausdorff's distance  -  First relative Hausdorff's distance median - Second relative Hausdorff's distance median(all in mm)\n"
        old_gm_hd = output_old_hd[output_old_hd.find(init_hd) +
                                  len(init_hd):].split('\n')
        new_gm_hd = output_new_hd[output_new_hd.find(init_hd) +
                                  len(init_hd):].split('\n')

        for i in range(len(old_gm_hd) - 3):  # last two lines are informations
            i_old, val_old = old_gm_hd[i].split(':')
            i_new, val_new = new_gm_hd[i].split(':')
            i_old = int(i_old[-2:])
            i_new = int(i_new[-2:])

            assert i == i_old == i_new, 'ERROR: when comparing Hausdorff distances, slice numbers differs.'
            hd_old, med1_old, med2_old = val_old.split('-')
            hd_new, med1_new, med2_new = val_new.split('-')

            if float(hd_old) == 0.0:
                no_ref_slices.append(i)
                hd_fic.write(str(i) + ', NO MANUAL SEGMENTATION\n')
            else:
                md_new = max(float(med1_new), float(med2_new))
                md_old = max(float(med1_old), float(med2_old))

                hd_fic.write(
                    str(i) + ', ' + hd_new + ', ' +
                    str(float(hd_old) - float(hd_new)) + ', ' + str(md_new) +
                    ', ' + str(md_old - md_new) + '\n')
        hd_fic.close()

        # Compute Dice coefficient
        # --- DC old template
        try:
            status_old_gm, output_old_gm = sct.run(
                'sct_dice_coefficient -i ' + file_manual_gmseg +
                ext_manual_gmseg + ' -d ' + fname_old_template_gm +
                ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            corrected_manual_gmseg = file_manual_gmseg + '_in_old_template_space' + ext_manual_gmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_old_template_gm + ',' + file_manual_gmseg +
                    ext_manual_gmseg + ',1,16] -o [reg_ref_to_res,' +
                    corrected_manual_gmseg + '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_gmseg+' -thr 0.1 -o '+corrected_manual_gmseg)
            sct.run('sct_maths -i ' + corrected_manual_gmseg +
                    ' -bin 0.1 -o ' + corrected_manual_gmseg)
            status_old_gm, output_old_gm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_gmseg + ' -d ' +
                fname_old_template_gm + '  -2d-slices 2',
                error_exit='warning')

        try:
            status_old_wm, output_old_wm = sct.run(
                'sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' +
                fname_old_template_wm + ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            path_manual_wmseg, file_manual_wmseg, ext_manual_wmseg = sct.extract_fname(
                fname_manual_wmseg)
            corrected_manual_wmseg = file_manual_wmseg + '_in_old_template_space' + ext_manual_wmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_old_template_wm + ',' + fname_manual_wmseg +
                    ',1,16] -o [reg_ref_to_res,' + corrected_manual_wmseg +
                    '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_wmseg+' -thr 0.1 -o '+corrected_manual_wmseg)
            sct.run('sct_maths -i ' + corrected_manual_wmseg +
                    ' -bin 0.1 -o ' + corrected_manual_wmseg)
            status_old_wm, output_old_wm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_wmseg + ' -d ' +
                fname_old_template_wm + '  -2d-slices 2',
                error_exit='warning')

        # --- DC new template
        try:
            status_new_gm, output_new_gm = sct.run(
                'sct_dice_coefficient -i ' + file_manual_gmseg +
                ext_manual_gmseg + ' -d ' + fname_new_template_gm +
                ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            corrected_manual_gmseg = file_manual_gmseg + '_in_new_template_space' + ext_manual_gmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_new_template_gm + ',' + file_manual_gmseg +
                    ext_manual_gmseg + ',1,16] -o [reg_ref_to_res,' +
                    corrected_manual_gmseg + '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_gmseg+' -thr 0.1 -o '+corrected_manual_gmseg)
            sct.run('sct_maths -i ' + corrected_manual_gmseg +
                    ' -bin 0.1 -o ' + corrected_manual_gmseg)
            status_new_gm, output_new_gm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_gmseg + ' -d ' +
                fname_new_template_gm + '  -2d-slices 2',
                error_exit='warning')

        try:
            status_new_wm, output_new_wm = sct.run(
                'sct_dice_coefficient -i ' + fname_manual_wmseg + ' -d ' +
                fname_new_template_wm + ' -2d-slices 2',
                error_exit='warning',
                raise_exception=True)
        except Exception:
            # put the result and the reference in the same space using a registration with ANTs with no iteration:
            path_manual_wmseg, file_manual_wmseg, ext_manual_wmseg = sct.extract_fname(
                fname_manual_wmseg)
            corrected_manual_wmseg = file_manual_wmseg + '_in_new_template_space' + ext_manual_wmseg
            sct.run('isct_antsRegistration -d 3 -t Translation[0] -m MI[' +
                    fname_new_template_wm + ',' + fname_manual_wmseg +
                    ',1,16] -o [reg_ref_to_res,' + corrected_manual_wmseg +
                    '] -n BSpline[3] -c 0 -f 1 -s 0')
            # sct.run('sct_maths -i '+corrected_manual_wmseg+' -thr 0.1 -o '+corrected_manual_wmseg)
            sct.run('sct_maths -i ' + corrected_manual_wmseg +
                    ' -bin 0.1 -o ' + corrected_manual_wmseg)
            status_new_wm, output_new_wm = sct.run(
                'sct_dice_coefficient -i ' + corrected_manual_wmseg + ' -d ' +
                fname_new_template_wm + '  -2d-slices 2',
                error_exit='warning')

        dice_name = 'dice_multilabel_reg.txt'
        dice_fic = open(dice_name, 'w')
        dice_fic.write(
            'The "diff" columns are comparisons between regular template registration and corrected template registration according to SC internal structure\n'
            'Diff = metric_corrected_reg - metric_regular_reg\n')
        dice_fic.write('#Slice, WM DC, WM diff, GM DC, GM diff\n')

        init_dc = '2D Dice coefficient by slice:\n'

        old_gm_dc = output_old_gm[output_old_gm.find(init_dc) +
                                  len(init_dc):].split('\n')
        old_wm_dc = output_old_wm[output_old_wm.find(init_dc) +
                                  len(init_dc):].split('\n')
        new_gm_dc = output_new_gm[output_new_gm.find(init_dc) +
                                  len(init_dc):].split('\n')
        new_wm_dc = output_new_wm[output_new_wm.find(init_dc) +
                                  len(init_dc):].split('\n')

        for i in range(len(old_gm_dc)):
            if i not in no_ref_slices:
                i_new_gm, val_new_gm = new_gm_dc[i].split(' ')
                i_new_wm, val_new_wm = new_wm_dc[i].split(' ')
                i_old_gm, val_old_gm = old_gm_dc[i].split(' ')
                i_old_wm, val_old_wm = old_wm_dc[i].split(' ')

                assert i == int(i_new_gm) == int(i_new_wm) == int(
                    i_old_gm
                ) == int(
                    i_old_wm
                ), 'ERROR: when comparing Dice coefficients, slice numbers differs.'

                dice_fic.write(
                    str(i) + ', ' + val_new_wm + ', ' +
                    str(float(val_new_wm) - float(val_old_wm)) + ', ' +
                    val_new_gm + ', ' +
                    str(float(val_new_gm) - float(val_old_gm)) + '\n')
            else:
                dice_fic.write(str(i) + ', NO MANUAL SEGMENTATION\n')
        dice_fic.close()
        os.chdir('..')

        sct.generate_output_file(tmp_dir + hd_name,
                                 self.param.output_folder + hd_name)
        sct.generate_output_file(tmp_dir + dice_name,
                                 self.param.output_folder + dice_name)

        if self.param.remove_tmp:
            sct.run('rm -rf ' + tmp_dir, error_exit='warning')
def dmri_moco(param):

    file_data = 'dmri'
    ext_data = '.nii'
    file_b0 = 'b0'
    file_dwi = 'dwi'
    mat_final = 'mat_final/'
    file_dwi_group = 'dwi_averaged_groups'  # no extension
    fsloutput = 'export FSLOUTPUTTYPE=NIFTI; '  # for faster processing, all outputs are in NIFTI
    ext_mat = 'Warp.nii.gz'  # warping field

    # Get dimensions of data
    sct.printv('\nGet dimensions of data...', param.verbose)
    nx, ny, nz, nt, px, py, pz, pt = Image(file_data+'.nii').dim
    sct.printv('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz), param.verbose)

    # Identify b=0 and DWI images
    sct.printv('\nIdentify b=0 and DWI images...', param.verbose)
    index_b0, index_dwi, nb_b0, nb_dwi = identify_b0('bvecs.txt', param.fname_bvals, param.bval_min, param.verbose)

    # check if dmri and bvecs are the same size
    if not nb_b0 + nb_dwi == nt:
        sct.printv('\nERROR in '+os.path.basename(__file__)+': Size of data ('+str(nt)+') and size of bvecs ('+str(nb_b0+nb_dwi)+') are not the same. Check your bvecs file.\n', 1, 'error')
        sys.exit(2)

    # Prepare NIFTI (mean/groups...)
    #===================================================================================================================
    # Split into T dimension
    sct.printv('\nSplit along T dimension...', param.verbose)
    status, output = sct.run('sct_split_data -i ' + file_data + ext_data + ' -dim t -suffix _T', param.verbose)

    # Merge b=0 images
    sct.printv('\nMerge b=0...', param.verbose)
    # cmd = fsloutput + 'fslmerge -t ' + file_b0
    # for it in range(nb_b0):
    #     cmd = cmd + ' ' + file_data + '_T' + str(index_b0[it]).zfill(4)
    cmd = 'sct_concat_data -dim t -o ' + file_b0 + ext_data + ' -i '
    for it in range(nb_b0):
        cmd = cmd + file_data + '_T' + str(index_b0[it]).zfill(4) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    status, output = sct.run(cmd, param.verbose)
    sct.printv(('  File created: ' + file_b0), param.verbose)

    # Average b=0 images
    sct.printv('\nAverage b=0...', param.verbose)
    file_b0_mean = file_b0+'_mean'
    sct.run('sct_maths -i '+file_b0+'.nii'+' -o '+file_b0_mean+'.nii'+' -mean t', param.verbose)
    # if not average_data_across_dimension(file_b0+'.nii', file_b0_mean+'.nii', 3):
    #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
    # cmd = fsloutput + 'fslmaths ' + file_b0 + ' -Tmean ' + file_b0_mean
    # status, output = sct.run(cmd, param.verbose)

    # Number of DWI groups
    nb_groups = int(math.floor(nb_dwi/param.group_size))
    
    # Generate groups indexes
    group_indexes = []
    for iGroup in range(nb_groups):
        group_indexes.append(index_dwi[(iGroup*param.group_size):((iGroup+1)*param.group_size)])
    
    # add the remaining images to the last DWI group
    nb_remaining = nb_dwi%param.group_size  # number of remaining images
    if nb_remaining > 0:
        nb_groups += 1
        group_indexes.append(index_dwi[len(index_dwi)-nb_remaining:len(index_dwi)])

    # DWI groups
    for iGroup in range(nb_groups):
        sct.printv('\nDWI group: ' +str((iGroup+1))+'/'+str(nb_groups), param.verbose)

        # get index
        index_dwi_i = group_indexes[iGroup]
        nb_dwi_i = len(index_dwi_i)

        # Merge DW Images
        sct.printv('Merge DW images...', param.verbose)
        file_dwi_merge_i = file_dwi + '_' + str(iGroup)
        cmd = 'sct_concat_data -dim t -o ' + file_dwi_merge_i + ext_data + ' -i '
        for it in range(nb_dwi_i):
            cmd = cmd + file_data + '_T' + str(index_dwi_i[it]).zfill(4) + ext_data + ','
        cmd = cmd[:-1]  # remove ',' at the end of the string
        sct.run(cmd, param.verbose)
        # cmd = fsloutput + 'fslmerge -t ' + file_dwi_merge_i
        # for it in range(nb_dwi_i):
        #     cmd = cmd +' ' + file_data + '_T' + str(index_dwi_i[it]).zfill(4)

        # Average DW Images
        sct.printv('Average DW images...', param.verbose)
        file_dwi_mean = file_dwi + '_mean_' + str(iGroup)
        sct.run('sct_maths -i '+file_dwi_merge_i+'.nii'+' -o '+file_dwi_mean+'.nii'+' -mean t', param.verbose)
        # if not average_data_across_dimension(file_dwi_merge_i+'.nii', file_dwi_mean+'.nii', 3):
        #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
        # cmd = fsloutput + 'fslmaths ' + file_dwi_merge_i + ' -Tmean ' + file_dwi_mean
        # sct.run(cmd, param.verbose)

    # Merge DWI groups means
    sct.printv('\nMerging DW files...', param.verbose)
    # file_dwi_groups_means_merge = 'dwi_averaged_groups'
    cmd = 'sct_concat_data -dim t -o ' + file_dwi_group + ext_data + ' -i '
    for iGroup in range(nb_groups):
        cmd = cmd + file_dwi + '_mean_' + str(iGroup) + ext_data + ','
    cmd = cmd[:-1]  # remove ',' at the end of the string
    sct.run(cmd, param.verbose)
    # cmd = fsloutput + 'fslmerge -t ' + file_dwi_group
    # for iGroup in range(nb_groups):
    #     cmd = cmd + ' ' + file_dwi + '_mean_' + str(iGroup)

    # Average DW Images
    # TODO: USEFULL ???
    sct.printv('\nAveraging all DW images...', param.verbose)
    fname_dwi_mean = 'dwi_mean'
    sct.run('sct_maths -i '+file_dwi_group+'.nii'+' -o '+file_dwi_group+'_mean.nii'+' -mean t', param.verbose)
    # if not average_data_across_dimension(file_dwi_group+'.nii', file_dwi_group+'_mean.nii', 3):
    #     sct.printv('ERROR in average_data_across_dimension', 1, 'error')
    # sct.run(fsloutput + 'fslmaths ' + file_dwi_group + ' -Tmean ' + file_dwi_group+'_mean', param.verbose)

    # segment dwi images using otsu algorithm
    if param.otsu:
        sct.printv('\nSegment group DWI using OTSU algorithm...', param.verbose)
        # import module
        otsu = importlib.import_module('sct_otsu')
        # get class from module
        param_otsu = otsu.param()  #getattr(otsu, param)
        param_otsu.fname_data = file_dwi_group+'.nii'
        param_otsu.threshold = param.otsu
        param_otsu.file_suffix = '_seg'
        # run otsu
        otsu.otsu(param_otsu)
        file_dwi_group = file_dwi_group+'_seg'

    # extract first DWI volume as target for registration
    nii = Image(file_dwi_group+'.nii')
    data_crop = nii.data[:, :, :, index_dwi[0]:index_dwi[0]+1]
    nii.data = data_crop
    nii.setFileName('target_dwi.nii')
    nii.save()


    # START MOCO
    #===================================================================================================================

    # Estimate moco on b0 groups
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Estimating motion on b=0 images...', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco = param
    param_moco.file_data = 'b0'
    if index_dwi[0] != 0:
        # If first DWI is not the first volume (most common), then there is a least one b=0 image before. In that case
        # select it as the target image for registration of all b=0
        param_moco.file_target = file_data + '_T' + str(index_b0[index_dwi[0]-1]).zfill(4)
    else:
        # If first DWI is the first volume, then the target b=0 is the first b=0 from the index_b0.
        param_moco.file_target = file_data + '_T' + str(index_b0[0]).zfill(4)
    param_moco.path_out = ''
    param_moco.todo = 'estimate'
    param_moco.mat_moco = 'mat_b0groups'
    moco.moco(param_moco)

    # Estimate moco on dwi groups
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Estimating motion on DW images...', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco.file_data = file_dwi_group
    param_moco.file_target = 'target_dwi'  # target is the first DW image (closest to the first b=0)
    param_moco.path_out = ''
    #param_moco.todo = 'estimate'
    param_moco.todo = 'estimate_and_apply'
    param_moco.mat_moco = 'mat_dwigroups'
    moco.moco(param_moco)

    # create final mat folder
    sct.create_folder(mat_final)

    # Copy b=0 registration matrices
    sct.printv('\nCopy b=0 registration matrices...', param.verbose)

    for it in range(nb_b0):
        sct.run('cp '+'mat_b0groups/'+'mat.T'+str(it)+ext_mat+' '+mat_final+'mat.T'+str(index_b0[it])+ext_mat, param.verbose)

    # Copy DWI registration matrices
    sct.printv('\nCopy DWI registration matrices...', param.verbose)
    for iGroup in range(nb_groups):
        for dwi in range(len(group_indexes[iGroup])):
            sct.run('cp '+'mat_dwigroups/'+'mat.T'+str(iGroup)+ext_mat+' '+mat_final+'mat.T'+str(group_indexes[iGroup][dwi])+ext_mat, param.verbose)

    # Spline Regularization along T
    if param.spline_fitting:
        moco.spline(mat_final, nt, nz, param.verbose, np.array(index_b0), param.plot_graph)

    # combine Eddy Matrices
    if param.run_eddy:
        param.mat_2_combine = 'mat_eddy'
        param.mat_final = mat_final
        moco.combine_matrix(param)

    # Apply moco on all dmri data
    sct.printv('\n-------------------------------------------------------------------------------', param.verbose)
    sct.printv('  Apply moco', param.verbose)
    sct.printv('-------------------------------------------------------------------------------', param.verbose)
    param_moco.file_data = 'dmri'
    param_moco.file_target = file_dwi+'_mean_'+str(0)  # reference for reslicing into proper coordinate system
    param_moco.path_out = ''
    param_moco.mat_moco = mat_final
    param_moco.todo = 'apply'
    moco.moco(param_moco)

    # copy geometric information from header
    # NB: this is required because WarpImageMultiTransform in 2D mode wrongly sets pixdim(3) to "1".
    copy_header('dmri.nii', 'dmri_moco.nii')

    # generate b0_moco_mean and dwi_moco_mean
    cmd = 'sct_dmri_separate_b0_and_dwi -i dmri'+param.suffix+'.nii -b bvecs.txt -a 1'
    if not param.fname_bvals == '':
        cmd = cmd+' -m '+param.fname_bvals
    sct.run(cmd, param.verbose)
zsum = np.sum(np.sum(data_cord, 0), 0)
zmin_cord = np.min(np.nonzero(zsum))
zmax_cord = np.max(np.nonzero(zsum))

# duplicate WM and GM atlas towards the top and bottom slices to match the cord template
# bottom slices
for iz in range(zmin_cord, zmin_wm):
    data_wm[:, :, iz] = data_wm[:, :, zmin_wm]
    data_gm[:, :, iz] = data_gm[:, :, zmin_wm]
# top slices
for iz in range(zmax_wm, zmax_cord):
    data_wm[:, :, iz] = data_wm[:, :, zmax_wm]
    data_gm[:, :, iz] = data_gm[:, :, zmax_wm]

# save modified atlases
im_wm.setFileName('wm_ext.nii.gz')
im_wm.data = data_wm
im_wm.save()
im_gm.setFileName('gm_ext.nii.gz')
im_gm.data = data_gm
im_gm.save()

# sum modified wm/gm
data_wmgm = data_wm + data_gm

# save wm/gm
im_wm.setFileName('wmgm_ext.nii.gz')
im_wm.data = data_wmgm
im_wm.save()

# register wmgm --> cord