Exemplo n.º 1
0
def test_relabel_pair():
    """
	grayscale -> grayscale label remapping.
	"""
    old_dataroot = f'{_TEST_DIR}/test_data'
    new_dataroot = f'{_TEST_DIR}/test_data'
    orig_pair = ('rgb_old.jpg', 'remapping_test_data_old/label_old.png')
    remapped_pair = ('rgb_new.jpg', 'remapping_test_data_new/label_new.png')
    old_label_fpath = f'{old_dataroot}/{orig_pair[1]}'
    create_leading_fpath_dirs(old_label_fpath)
    new_label_fpath = f'{new_dataroot}/{remapped_pair[1]}'

    semantic_img = np.array([[254, 0, 1], [7, 8, 9]], dtype=np.uint8)
    imageio.imwrite(old_label_fpath, semantic_img)
    label_mapping = {254: 253, 0: 255, 1: 0, 7: 6, 8: 7, 9: 8}
    label_mapping_arr = form_label_mapping_array(label_mapping)
    relabel_pair(old_dataroot,
                 new_dataroot,
                 orig_pair,
                 remapped_pair,
                 label_mapping_arr,
                 dataset_colors=None)

    gt_mapped_img = np.array([[253, 255, 0], [6, 7, 8]], dtype=np.uint8)
    remapped_img = imageio.imread(new_label_fpath)
    assert np.allclose(gt_mapped_img, remapped_img)
    os.remove(old_label_fpath)
    os.remove(new_label_fpath)
Exemplo n.º 2
0
def save_prediction_visualization(
        pred_folder: str, image_path: str, image_name: str, pred: np.ndarray,
        target_img: np.ndarray, id_to_class_name_map: Mapping[int,
                                                              str]) -> None:
    """
        Args:
        -   pred_folder
        -   image_path
        -   pred
        -   target_img
        -   id_to_class_name_map

        Returns:
        -   None
    """
    image_name = Path(image_name).stem
    mask_save_dir = pred_folder.replace('gray', 'rgb_mask_predictions')
    grid_save_fpath = f'{mask_save_dir}/{image_name}.jpg'
    rgb_img = cv2_imread_rgb(image_path)
    #save_pred_vs_label_7tuple(rgb_img, pred, target_img, self.id_to_class_name_map, grid_save_fpath)
    write_six_img_grid_w_embedded_names(rgb_img, pred, target_img,
                                        id_to_class_name_map, grid_save_fpath)

    overlaid_save_fpath = f'{mask_save_dir}_overlaid/{image_name}.jpg'
    create_leading_fpath_dirs(overlaid_save_fpath)
    frame_visualizer = Visualizer(rgb_img, metadata=None)
    overlaid_img = frame_visualizer.overlay_instances(
        label_map=pred, id_to_class_name_map=id_to_class_name_map)
    imageio.imwrite(overlaid_save_fpath, overlaid_img)
Exemplo n.º 3
0
def cv2_write_rgb(save_fpath: str, img_rgb: np.ndarray) -> None:
    """
	Args:
	    save_fpath: string representing absolute path where image should be saved
	    img_rgb: (H,W,C) array representing Numpy image in RGB order
	"""
    img_file_type = Path(save_fpath).suffix
    assert img_file_type in ['.jpg', '.png']
    create_leading_fpath_dirs(save_fpath)
    cv2.imwrite(save_fpath, img_rgb[:, :, ::-1])
Exemplo n.º 4
0
def cv2_write_rgb(save_fpath: str, img_rgb: np.ndarray):
    """
		Args:
		-	save_fpath

		Returns:
		-	None
	"""
    img_file_type = Path(save_fpath).suffix
    assert img_file_type in ['.jpg', '.png']
    create_leading_fpath_dirs(save_fpath)
    cv2.imwrite(save_fpath, img_rgb[:, :, ::-1])
Exemplo n.º 5
0
def relabel_pair(old_dataroot: str,
                 new_dataroot: str,
                 orig_pair: Tuple[str, str],
                 remapped_pair: Tuple[str, str],
                 dname: str,
                 tax_converter: TaxonomyConverter,
                 segm_to_class: Mapping[int, int],
                 dataset_colors: Optional[np.ndarray] = None):
    """
	No need to copy the RGB files again. We just update the label file paths.

		Args:
		-	old_dataroot:
		-	new_dataroot: 
		-	orig_pair: Tuple containing relative path to RGB image and label image
		-	remapped_pair: Tuple containing relative path to RGB image and label image
		-	label_mapping_arr: 
		-	dataset_colors:

		Returns:
		-	None
	"""
    _, orig_rel_label_fpath = orig_pair
    _, remapped_rel_label_fpath = remapped_pair

    old_label_fpath = f'{old_dataroot}/{orig_rel_label_fpath}'
    if not os.path.exists(old_label_fpath):
        print("Warning: File " + old_label_fpath + " not found!")
        return

    if dataset_colors is None:
        label_img = imageio.imread(old_label_fpath)
    else:
        # remap from RGB encoded labels to 1-channel class indices
        label_img_rgb = cv2_imread_rgb(old_label_fpath)
        label_img = rgb_img_to_obj_cls_img(label_img_rgb, dataset_colors)

    if not segm_to_class is None:
        label_img_id = label_img[:, :, 0] + (label_img[:, :, 1] * 256) + (
            label_img[:, :, 2] * 256**2)
        label_img = np.ones(label_img.shape[:2],
                            dtype=np.uint8) * 255  #initialize with unlabeled
        for src, dst in segm_to_class.items():
            label_img[label_img_id == src] = dst

    labels = torch.tensor(label_img, dtype=torch.int64)
    remapped_img = tax_converter.transform_label(labels, dname)

    new_label_fpath = f'{new_dataroot}/{remapped_rel_label_fpath}'
    create_leading_fpath_dirs(new_label_fpath)
    remapped_img = remapped_img.numpy().astype(dtype=np.uint8)
    imageio.imwrite(new_label_fpath, remapped_img)
Exemplo n.º 6
0
    def execute_on_video(self,
                         max_num_frames: int = 5000,
                         min_resolution: int = 1080) -> None:
        """
		input_file is a path to a video file.
		Read frames from an RGB video file, and write overlaid
		predictions into a new video file.
			
			Args:
			-	None

			Returns:
			-	None
		"""
        in_fname_stem = Path(self.input_file).stem
        out_fname = f'{in_fname_stem}_{self.args.model_name}_universal'
        out_fname += f'_scales_{self.scales_str}_base_sz_{self.args.base_size}.mp4'

        output_video_fpath = f'{_ROOT}/temp_files/{out_fname}'
        create_leading_fpath_dirs(output_video_fpath)
        logger.info(f'Write video to {output_video_fpath}')
        writer = VideoWriter(output_video_fpath)

        video_fpath = '/Users/johnlamb/Downloads/sample_ffmpeg.mp4'
        reader = VideoReader(self.input_file)
        for frame_idx in range(reader.num_frames):
            logger.info(f'On image {frame_idx}/{reader.num_frames}')
            rgb_img = reader.get_frame()
            if frame_idx > max_num_frames:
                break
            pred_label_img = self.execute_on_img(rgb_img)

            # avoid blurry images by upsampling RGB before overlaying text
            if np.amin(rgb_img.shape[:2]) < min_resolution:
                rgb_img = resize_img_by_short_side(rgb_img, min_resolution,
                                                   'rgb')
                pred_label_img = resize_img_by_short_side(
                    pred_label_img, min_resolution, 'label')

            metadata = None
            frame_visualizer = Visualizer(rgb_img, metadata)
            output_img = frame_visualizer.overlay_instances(
                label_map=pred_label_img,
                id_to_class_name_map=self.id_to_class_name_map)
            writer.add_frame(output_img)

        reader.complete()
        writer.complete()
Exemplo n.º 7
0
def form_hstacked_imgs(img_list: List[np.ndarray],
                       hstack_save_fpath: str,
                       save_to_disk: bool = True) -> np.ndarray:
    """
	Concatenate images along a horizontal axis and save them.
	Accept RGB images, and convert to BGR for OpenCV to save them.

	Args:
	    img_list: list of Numpy arrays e.g. representing different RGB visualizations of same image,
	        must all be of same height
	    hstack_save_fpath: string, representing file path
	
	Returns:
	    hstack_img: Numpy array representing RGB image, containing horizontally stacked images as tiles.
	"""
    img_file_type = Path(hstack_save_fpath).suffix
    assert img_file_type in ['.jpg', '.png']
    create_leading_fpath_dirs(hstack_save_fpath)

    img_h, img_w, ch = img_list[0].shape
    assert ch == 3

    # height and number of channels must match
    assert all(img.shape[0] == img_h for img in img_list)
    assert all(img.shape[2] == ch for img in img_list)

    num_imgs = len(img_list)

    all_widths = [img.shape[1] for img in img_list]
    hstack_img = np.zeros((img_h, sum(all_widths), 3), dtype=np.uint8)

    running_w = 0
    for i, img in enumerate(img_list):
        h, w, _ = img.shape
        start = running_w
        end = start + w
        hstack_img[:, start:end, :] = img
        running_w += w

    if save_to_disk:
        cv2.imwrite(hstack_save_fpath, hstack_img[:, :, ::-1])
    return hstack_img
Exemplo n.º 8
0
def relabel_pair(old_dataroot: str,
                 new_dataroot: str,
                 orig_pair: Tuple[str, str],
                 remapped_pair: Tuple[str, str],
                 label_mapping_arr: np.ndarray,
                 dataset_colors: Optional[np.ndarray] = None):
    """
	No need to copy the RGB files again. We just update the label file paths.

		Args:
		-	old_dataroot:
		-	new_dataroot: 
		-	orig_pair: Tuple containing relative path to RGB image and label image
		-	remapped_pair: Tuple containing relative path to RGB image and label image
		-	label_mapping_arr: 
		-	dataset_colors:

		Returns:
		-	None
	"""
    _, orig_rel_label_fpath = orig_pair
    _, remapped_rel_label_fpath = remapped_pair

    old_label_fpath = f'{old_dataroot}/{orig_rel_label_fpath}'

    if dataset_colors is None:
        label_img = imageio.imread(old_label_fpath)
    else:
        # remap from RGB encoded labels to 1-channel class indices
        label_img_rgb = cv2_imread_rgb(old_label_fpath)
        label_img = rgb_img_to_obj_cls_img(label_img_rgb, dataset_colors)
    remapped_img = map_semantic_img_fast(label_img, label_mapping_arr)

    new_label_fpath = f'{new_dataroot}/{remapped_rel_label_fpath}'
    create_leading_fpath_dirs(new_label_fpath)
    imageio.imwrite(new_label_fpath, remapped_img)