Exemplo n.º 1
0
    
    Tot_trials = epdat.shape[1] + epdat_3.shape[1]
    
    plt.figure()
    plt.plot(Peak2Peak.T)
    plt.title(subject + ' Tot trials:' + str(Tot_trials))
    
    # plt.figure()
    # plt.plot(Peak2Peak_3.T)

#%% Correlation Analysis

    Ht_12 = mseqXcorr(epdat,mseq[0,:])
    Ht_3 = mseqXcorr(epdat_3,mseq_shift[0,:])
    
    Ht_epochs_12, t_epochs = mseqXcorrEpochs_fft(epdat,mseq[0,:],fs)
    Ht_epochs_3, t_epochs = mseqXcorrEpochs_fft(epdat_3,mseq_shift[0,:],fs)
    
    Ht_epochs = np.concatenate([Ht_epochs_12,Ht_epochs_3],axis=1)
    
    Ht = Ht_12 * epdat.shape[1]/Tot_trials + Ht_3 * epdat_3.shape[1]/Tot_trials


#%% Plot Ht

    # if ch_picks.size == 31:
    #     sbp = [5,3]
    #     sbp2 = [4,4]
    # elif ch_picks.size == 32:
    #     sbp = [4,4]
    #     sbp2 = [4,4]
        plt.plot(Peak2Peak.T)
        plt.title(subject + ' ' + str(m))

#%% Correlation Analysis

    Ht = []
    Htnf = []
    Ht_epochs = []
    t_epochs = []
    # do cross corr
    for m in range(len(epdat)):
        print('On mseq # ' + str(m + 1))

        Ht_m = mseqXcorr(epdat[m], mseq[m][0, :])

        Ht_epochs_m, t_epochs_m = mseqXcorrEpochs_fft(epdat[m], mseq[m][0, :],
                                                      fs)

        Ht.append(Ht_m)
        Ht_epochs.append(Ht_epochs_m)
        t_epochs.append(t_epochs_m)

        for nf in range(num_nfs):
            print('On nf: ' + str(nf))
            resp = epdat[m].copy()
            inv_inds = np.random.permutation(
                epdat[m].shape[1])[:round(epdat[m].shape[1] / 2)]
            resp[:, inv_inds, :] = -resp[:, inv_inds, :]
            Ht_nf = mseqXcorr(resp, mseq[m][0, :])
            Htnf.append(Ht_nf)

#%% Plot Ht
Exemplo n.º 3
0
 plt.figure()
 plt.plot(Peak2Peak.T)
 plt.title(subject + ' ' + str(Tot_trials))
 
 # plt.figure()
 # plt.plot(Peak2Peak[:,mask_trials].T)
 
 # plt.figure()
 # plt.plot(Peak2Peak[np.delete(ch_picks,ch_maxAmp),:].T)
 
 #%% Correlation Analysis
 
 Htnf = []
 
 Ht = mseqXcorr(epdat,mseq[0,:])
 Ht_epochs, t_epochs = mseqXcorrEpochs_fft(epdat,mseq[0,:],fs)
 
 for nf in range(num_nfs):
     print('On nf:' + str(nf))
     resp = epdat.copy()
     inv_inds = np.random.permutation(epdat.shape[1])[:round(epdat.shape[1]/2)]
     resp[:,inv_inds,:] = -resp[:,inv_inds,:]
     Ht_nf = mseqXcorr(resp,mseq[0,:])
     Htnf.append(Ht_nf)
 
 #%% Plot Ht
 
 if ch_picks.size == 31:
     sbp = [5,3]
     sbp2 = [4,4]
 elif ch_picks.size == 32:
Exemplo n.º 4
0
    #%% Remove epochs with large deflections
    # Reject_Thresh=150e-6
    Tot_trials = np.zeros([len(mseq)])
    for m in range(len(epdat)):
        Peak2Peak = epdat[m].max(axis=2) - epdat[m].min(axis=2)
        mask_trials = np.all(Peak2Peak < Reject_Thresh, axis=0)
        print('rejected ' + str(epdat[m].shape[1] - sum(mask_trials)) +
              ' trials due to P2P')
        epdat[m] = epdat[m][:, mask_trials, :]
        print('Total Trials Left: ' + str(epdat[m].shape[1]))
        Tot_trials[m] = epdat[m].shape[1]

    plt.figure()
    plt.plot(Peak2Peak.T)

    #%% Correlation Analysis

    Ht = []
    Htnf = []
    # do cross corr
    for m in range(len(epdat)):
        print('On mseq # ' + str(m + 1))
        Ht_m, t_keep = mseqXcorrEpochs_fft(epdat[m], mseq[:, 0], fs)
        Ht.append(Ht_m[0, :, :])

    #%% Save Data
    with open(os.path.join(pickle_loc, subject + '_TMTF_cz.pickle'),
              'wb') as file:
        pickle.dump([t_keep, Ht, info_obj, ch_picks], file)
    del data_eeg, data_evnt, epdat, Ht, info_obj, Htnf, Ht_m