Exemplo n.º 1
0
    def __init__(self, model_path):
        with tf.Graph().as_default():
            # mtcnn model
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
            self.sess_mtcnn = tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options, log_device_placement=False))
            with self.sess_mtcnn.as_default():
                # nets = [pnet, rnet, onet]
                self.nets = detect_face.create_mtcnn(self.sess_mtcnn, None)

            # facenet model
            self.sess_facenet = tf.Session()
            with self.sess_facenet.as_default():
                facenet.load_model(model_path)
                self.image_tensor = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                self.embedding_tensor = tf.get_default_graph(
                ).get_tensor_by_name("embeddings:0")
                # True for training and False for testing
                self.phase_tensor = tf.get_default_graph().get_tensor_by_name(
                    "phase_train:0")
        print('load model success')

        # define parameters
        self.minsize = 20
        self.threshold = [0.6, 0.7, 0.7]
        self.factor = 0.709
Exemplo n.º 2
0
    def init(self, args=None):
        if self.model is None:
            if args is None:
                self.model = FaceCascade({
                    'mode': 'INFERENCE',
                    'model_dir': '../models/cascade',
                    'ckpt_prefix': './server/models/12-net/model.ckpt',
                    'cascade': 12,
                })
            else:
                self.model = FaceCascade({
                    'mode': 'INFERENCE',
                    'model_dir': '../models/cascade',
                    'ckpt_prefix': args.model,
                    'cascade': args.cascade,
                })
        self.threshold = 0.99

        self.count_val = 0
        self.count_correct = 0
        self.count_positive = 0
        self.count_true_positive = 0

        if self.sess_mtcnn is None:
            self.sess_mtcnn = tf.Session()
            self.pnet, self.rnet, self.onet = mtcnn_detect.create_mtcnn(
                self.sess_mtcnn, None)
        """if self.fxpress is None:
            self.fxpress = EmotionRecognition()
            self.fxpress.build_network()"""

        if self.emoc is None:
            self.emoc = EmotionClassifier()
            self.emoc.build_network(args)
Exemplo n.º 3
0
 def __init__(self, model_path, min_size=20, tf_config=None):
     self.minsize = min_size # minimum size of face
     self.threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
     self.factor = 0.709 # scale factor
     print('Load MTCNN model from ', model_path)
     self.graph = tf.Graph()
     with self.graph.as_default():
         self.sess = tf.Session(config=tf_config)
         with self.sess.as_default():
             self.pnet, self.rnet, self.onet = detect_face.create_mtcnn(self.sess, model_path=model_path)
Exemplo n.º 4
0
    def __init__(self):
        sleep(random.random())

        # self.random_order = True
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True  # grow memory usage as required
        config.gpu_options.per_process_gpu_memory_fraction = 0.8  # limit memory usage up to 80%
        self.sess = tf.Session(config=config)
        # with sess.as_default():
        self.pnet, self.rnet, self.onet = detect_face.create_mtcnn(
            self.sess, None)
Exemplo n.º 5
0
def profiling(args):
    mtcnn = {}
    mtcnn['session'] = tf.Session()
    #self.__pnet, self.__rnet, self.__onet = FaceDetector.create_mtcnn(self.__mtcnn, None)
    mtcnn['pnet'], mtcnn['rnet'], mtcnn['onet'] = FaceDetector.create_mtcnn(
        mtcnn['session'], None)

    emoc = EmotionClassifier()
    emoc.build_network(None)

    #facenet_res = facenet.load_model('../models/facenet/20170512-110547.pb') # InceptionResnet V1
    facenet_sqz = facenet.load_model(
        '../models/facenet/20180204-160909')  # squeezenet
Exemplo n.º 6
0
def main(args):
    st = time.time()
    #check if input directory exists
    if not os.path.exists(args.input_directory):
        print("Error! No input direcotory", args.input_directory)
        return -1

    # read images
    images_l, images_paths = load_images(args.input_directory)

    #create tensorflow session
    # init. tensorflow session
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.75)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, './mtcnn')
            #localize and blur faces, iterate over images
            for image, image_path in zip(images_l, images_paths):
                print("Processing", image_path + "...")

                bbs, lds = mtcnn_localize_faces(image,
                                                pnet,
                                                rnet,
                                                onet,
                                                minsize=20,
                                                threshold=[0.7, 0.8, 0.85],
                                                factor=0.75)

                # jumpt iteration if there's no face
                if len(bbs) == 0:
                    print("Couldn't find faces!")
                    continue

                #get faces
                for bb, ld in zip(bbs, lds):
                    #get bounding box
                    #top, righ, bottom, left
                    top = bb[0]
                    right = bb[1]
                    bottom = bb[2]
                    left = bb[3]
                    # build landmarks' x, y pairs
                    points = []
                    for x, y in zip(ld[:5], ld[5:]):
                        points.append(x)
                        points.append(y)

                    #get face thumbnail
                    face_image = image[top:bottom, left:right]
                    #blur face thumbnail
                    if args.blur > 0:
                        face_image = cv2.GaussianBlur(face_image, (105, 105),
                                                      args.blur)
                    #black
                    else:
                        face_image = np.zeros(face_image.shape)

                    #write blured face to image
                    image[top:bottom, left:right] = face_image

                    #PIL image
                    # pil_image = Image.fromarray(image)
                    # pil_image_face = Image.fromarray(face_image)

                    #eyes' landmarks: first two pairs
                    # get larger rectangle
                    # points[0] = points[0] * 0.9
                    # points[1] = points[1] * 0.9
                    # points[2] = points[2] * 1.1
                    # points[3] = points[3] * 1.1
                    # draw = ImageDraw.Draw(pil_image)
                    #cover eyes with rectangle
                    # draw.rectangle(points[:4], fill="black")

                #create output directory if it doesn't exist
                if not os.path.exists(args.output_directory):
                    os.makedirs(args.output_directory)

                #save image
                pil_image = Image.fromarray(image)
                pil_image.save(os.path.join(args.output_directory, image_path))

    print("Total running time:", time.time() - st, "sec.")

    return 0
Exemplo n.º 7
0
def main(args):
    sleep(random.random())
    output_dir = os.path.expanduser(args.output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    # Store some git revision info in a text file in the log directory
    src_path,_ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
    dataset = facenet.get_dataset(args.input_dir)
    
    print('Creating networks and loading parameters')
    
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        configs_ =  tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)
        configs_.gpu_options.allow_growth = True
        sess = tf.Session(config=configs_)
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
    
    minsize = 20 # minimum size of face
    threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
    factor = 0.709 # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key)
    
    with open(bounding_boxes_filename, "w") as text_file:
        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if args.random_order:
            random.shuffle(dataset)
        for cls in dataset:
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if args.random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir, filename+'.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        img = misc.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim<2:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = facenet.to_rgb(img)
                        img = img[:,:,0:3]
    
                        bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
                        nrof_faces = bounding_boxes.shape[0]
                        if nrof_faces>0:
                            det = bounding_boxes[:,0:4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces>1:
                                if args.detect_multiple_faces:
                                    for i in range(nrof_faces):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ])
                                    offset_dist_squared = np.sum(np.power(offsets,2.0),0)
                                    index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering
                                    det_arr.append(det[index,:])
                            else:
                                det_arr.append(np.squeeze(det))

                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = np.zeros(4, dtype=np.int32)
                                bb[0] = np.maximum(det[0]-args.margin/2, 0)
                                bb[1] = np.maximum(det[1]-args.margin/2, 0)
                                bb[2] = np.minimum(det[2]+args.margin/2, img_size[1])
                                bb[3] = np.minimum(det[3]+args.margin/2, img_size[0])
                                cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
                                scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear')
                                nrof_successfully_aligned += 1
                                filename_base, file_extension = os.path.splitext(output_filename)
                                if args.detect_multiple_faces:
                                    output_filename_n = "{}_{}{}".format(filename_base, i, file_extension)
                                else:
                                    output_filename_n = "{}{}".format(filename_base, file_extension)
                                misc.imsave(output_filename_n, scaled)
                                text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            
    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
Exemplo n.º 8
0
def main():
    if ARGS.test == 'train':
        train(ARGS)
    elif ARGS.test == 'gen':
        gen(ARGS)
    elif ARGS.test == 'predict':
        predict(ARGS)
    elif ARGS.test == 'server':
        server_start(ARGS)
    elif ARGS.test == 'server_production':
        server_start(ARGS, ARGS.port)
    elif ARGS.test == 'hnm':
        hnm(ARGS)
    elif ARGS.test == 'val':
        val(ARGS)
    elif ARGS.test == 'fer':
        fer(ARGS)

    elif ARGS.test == 'profiling':
        profiling(ARGS)
    elif ARGS.test == 'facenet':
        print(facenet)

        mtcnn = tf.Session()
        pnet, rnet, onet = FaceDetector.create_mtcnn(mtcnn, None)

        # Load the model
        t_ = time.time()
        print('Loading model...')
        #fnet = facenet.load_model('../models/facenet/20180204-160909') # squeezenet
        fnet = facenet.load_model(
            '../models/facenet/20170512-110547.pb')  # InceptionResnet V1
        t_ = time.time() - t_
        print('done', t_ * 1000)

        stats = {
            'same': {
                'd_avg': 0.,
                'd_max': -9999.,
                'd_min': 9999.,
                'sqr_avg': 0.,
                'count': 0,
            },
            'diff': {
                'd_avg': 0.,
                'd_max': -9999.,
                'd_min': 9999.,
                'sqr_avg': 0.,
                'count': 0,
            },
            'precision': {},
            'timing': {
                'count': 0,
                'forward': 0.
            }
        }

        if True:
            # Get input and output tensors
            emb = None
            names = []
            for iteration in range(16):
                # Load faces from LFW dataset and parse their names from path to group faces
                images = []
                batch_size = 128
                fid = 0
                for i in range(batch_size):
                    f = DirectoryWalker().get_a_file(
                        directory='../data/face/lfw', filters=['.jpg'])
                    if f is None or not f.path:
                        break

                    n = os.path.split(os.path.split(f.path)[0])[1]
                    #print('name', n)
                    n = abs(hash(n)) % (10**8)

                    img = cv2.imread(f.path, 1)
                    img = img
                    extents, landmarks = FaceDetector.detect_face(
                        img / 255.,
                        120,
                        pnet,
                        rnet,
                        onet,
                        threshold=[0.6, 0.7, 0.9],
                        factor=0.6,
                        interpolation=cv2.INTER_LINEAR)

                    for j, e in enumerate(extents):
                        x1, y1, x2, y2, confidence = e.astype(dtype=np.int)
                        #print(len(landmarks[j]))
                        #cropped = img[int(x1):int(x2), int(y1):int(y2), :]
                        aligned = FaceApplications.align_face(img,
                                                              landmarks[j],
                                                              intensity=1.,
                                                              sz=160,
                                                              ortho=True,
                                                              expand=1.5)
                        #cv2.imwrite('../data/face/mtcnn_cropped/'+str(fid).zfill(4)+'.jpg', aligned)

                        images.append(aligned / 255.)
                        names.append(n)
                        """debug = aligned.astype(dtype=np.int)
                        print('debug', debug)
                        for p in debug:
                            cv2.circle(img, (p[0], p[1]), 2, (255, 0, 255))

                        for p in landmarks[j]:
                            cv2.circle(img, (p[0], p[1]), 2, (255, 255, 0))"""

                        fid += 1

                    #cv2.imwrite('../data/face/mtcnn_cropped/'+str(i).zfill(4)+'-annotated.jpg', img)

                # Run forward pass to calculate embeddings
                if len(images):
                    t_ = time.time()
                    if emb is None:
                        emb = fnet(images)
                    else:
                        emb = np.concatenate((emb, fnet(images)))
                        #emb = emb + sess.run(embeddings, feed_dict=feed_dict)
                    t_ = time.time() - t_
                    stats['timing']['count'] += len(images)
                    stats['timing']['forward'] += t_ * 1000
                    print('forward', emb.shape, t_ * 1000)
                    print()

            print()
            print('avg. forward time:',
                  stats['timing']['forward'] / stats['timing']['count'])

            # Test distance
            samples = sklearn.preprocessing.normalize(emb)
            for i1, s1 in enumerate(samples):
                for i2, s2 in enumerate(samples):
                    if i1 != i2:
                        d_ = scipy.spatial.distance.cosine(s1, s2)

                        if names[i1] == names[
                                i2]:  # Same person as annotated by LFW
                            cate = 'same'
                        else:  # Different person
                            cate = 'diff'
                        c_ = stats[cate]['count']
                        stats[cate]['d_avg'] = stats[cate]['d_avg'] * c_ / (
                            c_ + 1) + d_ / (c_ + 1)
                        d_sqr = d_ * d_
                        stats[cate]['sqr_avg'] = stats[cate][
                            'sqr_avg'] * c_ / (c_ + 1) + d_sqr / (c_ + 1)
                        if d_ > stats[cate]['d_max']: stats[cate]['d_max'] = d_
                        elif d_ < stats[cate]['d_min']:
                            stats[cate]['d_min'] = d_
                        stats[cate]['count'] += 1

                        # Get statistics of precision on different thresholds
                        increments = 64
                        for t_ in range(increments):
                            threshold = 0.2 + t_ * (0.6 / increments)
                            if threshold not in stats['precision']:
                                stats['precision'][threshold] = {
                                    'correct': 0,
                                    'total': 0,
                                    'precision': 0.,
                                    'true_pos': 0,
                                    'total_pos': 0,
                                    'recall': 0.,
                                }
                            if (cate == 'same' and d_ <= threshold) or (
                                    cate == 'diff' and d_ > threshold):
                                stats['precision'][threshold]['correct'] += 1
                            if cate == 'same':
                                if d_ <= threshold:
                                    stats['precision'][threshold][
                                        'true_pos'] += 1
                                stats['precision'][threshold]['total_pos'] += 1
                                stats['precision'][threshold][
                                    'recall'] = stats['precision'][threshold][
                                        'true_pos'] / stats['precision'][
                                            threshold]['total_pos']
                            stats['precision'][threshold]['total'] += 1
                            stats['precision'][threshold]['precision'] = stats[
                                'precision'][threshold]['correct'] / stats[
                                    'precision'][threshold]['total']
            """tree = scipy.spatial.KDTree(samples)
            for i, s in enumerate(samples):
                print(i, tree.query(s))"""

        for cate in ['same', 'diff']:
            stats[cate]['stddev'] = stats[cate][
                'sqr_avg'] - stats[cate]['d_avg'] * stats[cate]['d_avg']
        print()
        pp = pprint.PrettyPrinter(indent=4)
        pp.pprint(stats)

        # Print precision vs recall
        print()
        print('threshold,recall,precision')
        for t in stats['precision']:
            t_stat = stats['precision'][t]
            print(
                str(t) + ',' + str(t_stat['recall']) + ',' +
                str(t_stat['precision']))

    elif ARGS.test == 'align':
        face_app = FaceApplications()
        face_app.align_dataset()
    elif ARGS.test == 'fxpress':
        fxpress(ARGS)
    elif ARGS.test == 'fxpress_train':
        fxpress_train(ARGS)
    elif ARGS.test == 'emoc':
        classifier = EmotionClassifier()
        classifier.build_network(ARGS)
        classifier.val(ARGS)
    elif ARGS.test == 'face_app':
        face_app = FaceApplications()
        face_app.detect()
    elif ARGS.test == 'face_benchmark':  # Test different parameters, resolutions, interpolation methods for MTCNN face detection time vs precision
        interpolations = ['NEAREST', 'LINEAR', 'AREA']
        resolutions = [256, 320, 384, 448, 512, 640, 1024, 1280]
        factors = [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]

        expectations = [
            ['0001.jpg', 4],
            ['0002.jpg', 1],
            ['0003.jpg', 1],
            ['0004.jpg', 0],
            ['0005.jpg', 1],
            ['0006.jpg', 1],
            ['0007.jpg', 59],
            ['0008.jpg', 6],
            ['0009.jpg', 1],
            ['0010.jpg', 5],
            ['0011.jpg', 4],
            ['0012.jpg', 17],
            ['0013.jpg', 20],
            ['0014.jpg', 48],
            ['0015.jpg', 22],
        ]

        log_file = open('../data/face_benchmark.csv', 'w')
        log_file.write('time,precision_index,cp,options\n')

        for interp in interpolations:
            for res_cap in resolutions:
                for factor in factors:
                    #res_cap = resolutions[0]
                    #factor = factors[0]
                    #interp = interpolations[0]
                    options = {
                        'res_cap': res_cap,
                        'factor': factor,
                        'interp': interp,
                    }
                    if interp == 'NEAREST':
                        interpolation = cv2.INTER_NEAREST
                    elif interp == 'LINEAR':
                        interpolation = cv2.INTER_LINEAR
                    elif interp == 'AREA':
                        interpolation = cv2.INTER_AREA

                    iterations = 20
                    file_count = len(expectations)
                    time_sampling = np.zeros((
                        file_count,
                        iterations,
                    ),
                                             dtype=np.float)
                    pi_sampling = np.zeros((
                        file_count,
                        iterations,
                    ),
                                           dtype=np.float)

                    image_dir = '../data/face_benchmark/'
                    for k, item in enumerate(expectations):
                        filename, expected_faces = item
                        inpath = image_dir + filename
                        img = cv2.imread(inpath, 1)
                        if img is None:
                            break

                        img, scaling = ImageUtilities.fit_resize(
                            img,
                            maxsize=(res_cap, res_cap),
                            interpolation=interpolation)
                        retval, bindata = cv2.imencode('.jpg', img)
                        bindata_b64 = base64.b64encode(bindata).decode()

                        requests = {
                            'requests': [{
                                'requestId':
                                str(uuid.uuid1()),
                                'media': {
                                    'content': bindata_b64
                                },
                                'services': [{
                                    'type': 'face_',
                                    'model': 'a-emoc',
                                    'options': options
                                }]
                            }],
                            'timing': {
                                'client_sent': time.time()
                            }
                        }

                        for i in range(iterations):
                            #url = 'http://10.129.11.4/cgi/predict'
                            requests['timing']['client_sent'] = time.time()
                            url = 'http://192.168.41.41:8080/predict'
                            postdata = json.dumps(requests)
                            #print()
                            #print(postdata)
                            #print()
                            request = Request(url, data=postdata.encode())
                            response = json.loads(
                                urlopen(request).read().decode())
                            timing = response['timing']
                            server_time = timing['server_sent'] - timing[
                                'server_rcv']
                            #print('server time:', server_time)
                            total_time = (time.time() -
                                          timing['client_sent']) * 1000
                            client_time = total_time - server_time
                            print('response time:', total_time)
                            pi = 0.
                            for r_ in response['requests']:
                                for s_ in r_['services']:
                                    rects_ = s_['results']['rectangles']
                                    if expected_faces:
                                        pi = len(rects_) / expected_faces
                                    elif len(rects_):
                                        pi = expected_faces / len(rects_)
                                    else:
                                        pi = 1.0
                                    #print('faces detected:', len(rects_), pi)
                            time_sampling[k][i] = total_time
                            pi_sampling[k][i] = pi

                            #time.sleep(0.5)

                            #print()
                            #print(response)
                            #print()

                    time_mean = np.mean(time_sampling)
                    pi_mean = np.mean(pi_sampling) * 100
                    cp = pi_mean * pi_mean / time_mean
                    print(time_mean, pi_mean)
                    print()
                    log_file.write(','.join([
                        str(time_mean),
                        str(pi_mean),
                        str(cp),
                        json.dumps(options)
                    ]) + '\n')
                    log_file.flush()

        log_file.close()
Exemplo n.º 9
0
def age_gender():

    sample_url = url_for('uploaded_file', filename="sample.jpeg")

    if request.method == 'POST':
        if 'file' not in request.files:
            return render_template("face.html",
                                   error_msg="No file has been selected!")
        file = request.files['file']
        if file and allowed_file(file.filename):

            with tf.Graph().as_default():
                sess = tf.Session()
                with sess.as_default():
                    pnet, rnet, onet = mtcnn.create_mtcnn(
                        sess, MTCNN_MODEL_PATH)

            filename = file.filename
            file_name = os.path.join(app.config['UPLOAD_FOLDER'], filename)
            file.save(file_name)

            start = time.time()

            # Resize the orginal image to 680-width and save as jpeg
            cv_ori = cv2.imread(file_name)
            cv_resize = cv2.resize(
                cv_ori,
                dsize=(680, int(cv_ori.shape[0] / cv_ori.shape[1] * 680)),
                interpolation=cv2.INTER_CUBIC)
            cv2.imwrite(file_name, cv_resize)

            # Read the image for face detection
            img = misc.imread(file_name)
            cv_img = cv2.imread(file_name)

            # Detect faces and landmarks by MTCNN
            bounding_boxes, landmarks = mtcnn.detect_face(
                img, 20, pnet, rnet, onet, [0.6, 0.7, 0.7], 0.709)

            # Crop the aligned faces for age and gender classification
            aligned_images = gender_age_predict.load_image(cv_img, landmarks)

            # Estimate gender and age of each face using ResNet50
            genders, ages = gender_age_predict.inception(
                FROZEN_GRAPH_PATH, aligned_images)

            # Draw boxes and labels for faces
            gender_age_predict.draw_label(cv_img, bounding_boxes, genders,
                                          ages)

            save_path = os.path.join(app.config['NEW_FOLDER'], filename)
            cv2.imwrite(save_path, cv_img)

            end = time.time()

            print('\n Evaluation time: {:.3f}s\n'.format(end - start))
            file_url = url_for('uploaded_file', filename=filename)
            return render_template("face.html",
                                   user_image=file_url,
                                   error_msg='')
        else:
            print('\n Incorrect upload image format.\n')
            return render_template("face.html",
                                   user_image=sample_url,
                                   error_msg='Incorrect image format!')
    return render_template("face.html", user_image=sample_url, error_msg='')
Exemplo n.º 10
0
face_size = 2 * 2 * conv4_face_out

# fc layer
fc_eye_size = 128
fc_face_size = 128
fc_face_mask_size = 256
face_face_mask_size = 128
fc_size = 128
fc2_size = 2

pre_data_mean = 0

pred_values = None

sess = tf.Session()
pnet, rnet, onet = detect_face.create_mtcnn(sess, "det/")

# def disp_img(img, x = None, y = None, px = None, py = None):
#     # img = train_eye_left[0]
#     r, g, b = cv2.split(img)
#     img = cv2.merge([b,g,r])
#     w, h, _= img.shape
#     cx, cy = int(w/2.0), int(h/2.0)
#     cv2.line(img, (cx, cy), (cx + x, cy + y), (0, 0, 255), 3)
#     cv2.line(img, (cx, cy), (cx + px, cy + py), (255, 0, 0), 3)
#
#     cv2.imshow("image", img)
#     cv2.waitKey(0)
#     cv2.destroyAllWindows()

Exemplo n.º 11
0
def convert_to_aligned_face(data_set, base_path, dataset_name):

    file_name = data_set.file_name
    genders = data_set.gender
    ages = data_set.age
    face_score = data_set.score
    num_images = data_set.shape[0]

    if dataset_name == "imdb":
        data_base_dir = os.path.join(base_path, "imdb_crop")
    elif dataset_name == "wiki":
        data_base_dir = os.path.join(base_path, "wiki_crop")
    else:
        raise NameError

    # load the mtcnn face detector
    with tf.Graph().as_default():
        sess = tf.Session()
        with sess.as_default():
            pnet, rnet, onet = mtcnn.create_mtcnn(sess, MTCNN_MODEL_PATH)

    error_count = 0
    write_count = 0

    for index in range(num_images):

        if face_score[index] < 0.75:
            continue
        if ~(0 <= ages[index] <= 100):
            continue
        if np.isnan(genders[index]):
            continue

        try:
            # Read the image for face detection
            img = misc.imread(
                os.path.join(data_base_dir, str(file_name[index][0])))
            cv_img = cv2.imread(
                os.path.join(data_base_dir, str(file_name[index][0])),
                cv2.IMREAD_COLOR)

            # Detect faces for age and gender classification
            bounding_boxes, landmarks = mtcnn.detect_face(
                img, 20, pnet, rnet, onet, [0.6, 0.7, 0.7], 0.709)

            if bounding_boxes.shape[0] != 1:
                continue
            else:
                # Crop aligned faces from image
                aligned_faces = load_image(cv_img, landmarks)
                face = aligned_faces[0]

                # Resize and write image to path
                output_dir = os.getcwd() + '/faces/' + dataset_name + '/'
                if os.path.isdir(output_dir):
                    pass
                else:
                    os.mkdir(output_dir)

                image_name = 'image{}_{}_{}.jpg'.format(
                    index + 70000, int(genders[index]), ages[index])
                output_path = output_dir + image_name
                cv2.imwrite(output_path, face)

        except Exception:  # some files seem not exist in face_data dir
            error_count = error_count + 1
            print("read {} error".format(index + 1))
            pass
        write_count = write_count + 1
    print("There are ", error_count, " missing pictures")
    print("Found", write_count, "valid faces")