Exemplo n.º 1
0
 def _save_img(self, fnames, refs, example_file):
     g            = gdal.Open(example_file)
     projection   = g.GetProjection()
     geotransform = g.GetGeoTransform()
     bands_refs   = zip(fnames, refs)
     f            = lambda band_ref: self._save_band(band_ref, projection = projection, geotransform = geotransform)
     parmap(f, bands_refs)
    def _get_boa(self,):

        pix_mem = 180.
        av_ram = psutil.virtual_memory().available
        needed = np.array([i.RasterXSize * i.RasterYSize * pix_mem for i in self._toa_bands])
        u_need = np.unique(needed)
        procs  = av_ram / u_need
        if av_ram > sum(needed):
            #ret = parmap(self._do_band, range(len(self.toa_bands)))
            self._chunks = 1
            ret = parmap(self._do_chunk, range(len(self.toa_bands)))
        else:
            ret = []
            index = []
            for i, proc in enumerate(procs):
                bands_to_do = np.arange(len(self.toa_bands))[needed==u_need[i]]
                if int(proc) >= 1:
                    self._chunks = 1
                    re = parmap(self._do_chunk, bands_to_do, min(int(proc), len(bands_to_do)))
                else:
                    self._chunks = int(np.ceil(1. / proc))
                    re = map(self._do_band)
                ret   += re
                index += (np.where(needed==u_need[i])[0]).tolist()
            ret = zip(*sorted(zip(index, ret)))[1]
        self.boa_rgb = ret[self.ri], ret[self.gi],ret[self.bi]
Exemplo n.º 3
0
    def _doing_one_file(self, modis_file, timestamp):
        self.modis_logger.info('Doing %s.' %
                               modis_file.b1.split('/')[-1].split('_EV_')[0])
        band_files = [
            getattr(modis_file, 'b%d' % band) for band in range(1, 8)
        ]
        angle_files = [
            getattr(modis_file, ang) for ang in ['vza', 'sza', 'vaa', 'saa']
        ]
        modis_toa = []
        modis_angle = []
        f = lambda fname: gdal.Open(fname).ReadAsArray()

        self.modis_logger.info('Reading in MODIS TOA.')
        modis_toa = parmap(f, band_files)

        self.modis_logger.info('Reading in angles.')
        modis_angle = parmap(f, angle_files)

        scale = np.array(modis_file.scale)
        offset = np.array(modis_file.offset)

        self.modis_toa = np.array(modis_toa) * np.array(
            scale)[:, None, None] + offset[:, None, None]
        self.modis_angle = np.array(modis_angle) / 100.
        self.example_file = band_files[0]
        self.sen_time = timestamp
        self.solving_modis_aerosol()
Exemplo n.º 4
0
 def _save_img(self, refs, bands):
     g = gdal.Open(self.s2.s2_file_dir + '/%s.jp2' % bands[0])
     projection = g.GetProjection()
     geotransform = g.GetGeoTransform()
     bands_refs = zip(bands, refs)
     f = lambda band_ref: self._save_band(
         band_ref, projection=projection, geotransform=geotransform)
     parmap(f, bands_refs)
Exemplo n.º 5
0
 def __init__(
         self,
         toa_dir,
         tile,
         year,
         month,
         day,
         bands=None,
         angle_exe='/home/ucfafyi/DATA/S2_MODIS/l_data/l8_angles/l8_angles'
 ):
     self.toa_dir = toa_dir
     self.tile = tile
     self.year = year
     self.month = month
     self.day = day
     if bands is None:
         self.bands = np.arange(1, 8)
     else:
         self.bands = np.array(bands)
     self.angle_exe = angle_exe
     composite      = glob(self.toa_dir + '/LC08_L1TP_%03d%03d_%04d%02d%02d_*_01_??_b1.tif' \
                      % ( self.tile[0], self.tile[1], self.year, self.month, self.day))[0].split('/')[-1].split('_')[:-1]
     self.header = '_'.join(composite)
     self.toa_file = [
         self.toa_dir + '/%s_b%d.tif' % (self.header, i) for i in self.bands
     ]
     self.mete_file = self.toa_dir + '/%s_MTL.txt' % self.header
     self.qa_file = self.toa_dir + '/%s_bqa.tif' % self.header
     try:
         self.saa_sza = [
             glob(self.toa_dir + '/%s_solar_B%02d.img' %
                  (self.header, i))[0] for i in self.bands
         ]
         self.vaa_vza = [
             glob(self.toa_dir + '/%s_sensor_B%02d.img' %
                  (self.header, i))[0] for i in self.bands
         ]
     except:
         ang_file = self.toa_dir + '/%s_ANG.txt' % self.header
         cwd = os.getcwd()
         os.chdir(self.toa_dir)
         f            =  lambda band: subprocess.call([self.angle_exe, ang_file, \
                                                       'BOTH', '1', '-f', '-32768', '-b', str(band)])
         parmap(f, self.bands)
         os.chdir(cwd)
         self.saa_sza = [
             self.toa_dir + '/%s_solar_B%02d.img' % (self.header, i)
             for i in self.bands
         ]
         self.vaa_vza = [
             self.toa_dir + '/%s_sensor_B%02d.img' % (self.header, i)
             for i in self.bands
         ]
     try:
         scale, offset = self._get_scale()
     except:
         raise IOError, 'Failed read in scalling factors.'
Exemplo n.º 6
0
 def _get_angles(self, ):
     saa, sza = np.array(parmap(gdal_reader,
                                self.saa_sza)).astype(float).transpose(
                                    1, 0, 2, 3) / 100.
     vaa, vza = np.array(parmap(gdal_reader,
                                self.vaa_vza)).astype(float).transpose(
                                    1, 0, 2, 3) / 100.
     saa = np.ma.array(saa, mask=((saa > 180) | (saa < -180)))
     sza = np.ma.array(sza, mask=((sza > 90) | (sza < 0)))
     vaa = np.ma.array(vaa, mask=((vaa > 180) | (vaa < -180)))
     vza = np.ma.array(vza, mask=((vza > 90) | (vza < 0)))
     saa.mask = sza.mask = vaa.mask = vza.mask = (saa.mask | sza.mask
                                                  | vaa.mask | vza.mask)
     return saa, sza, vaa, vza
    def fire_shift_optimize(self, ):
        #self.S2_PSF_optimization()
        self._preprocess()
        if self.lh_mask.sum() == 0:
            self.costs = np.array([
                100000000000.,
            ])
            return 0, 0
        min_val = [-50, -50]
        max_val = [50, 50]
        ps, distributions = create_training_set(['xs', 'ys'],
                                                min_val,
                                                max_val,
                                                n_train=50)
        self.shift_solved = parmap(self.shift_optimize, ps)
        self.paras, self.costs = np.array([i[0] for i in self.shift_solved]), \
                                           np.array([i[1] for i in self.shift_solved])

        if (1 - self.costs.min()) >= 0.6:
            xs, ys = self.paras[self.costs == np.nanmin(self.costs)][0].astype(
                int)
        else:
            xs, ys = 0, 0
        #print 'Best shift is ', xs, ys, 'with the correlation of', 1-self.costs.min()
        return xs, ys
Exemplo n.º 8
0
    def fire_correction(self, toa, sza, vza, saa, vaa, aod, tcwv, tco3,
                        elevation, band_indexs):
        self._toa = toa
        self._sza = sza
        self._vza = vza
        self._saa = saa
        self._vaa = vaa
        self._aod = aod
        self._tcwv = tcwv
        self._tco3 = tco3
        self._elevation = elevation
        self._band_indexs = band_indexs
        rows = np.repeat(np.arange(self._num_blocks), self._num_blocks)
        columns = np.tile(np.arange(self._num_blocks), self._num_blocks)
        blocks = zip(rows, columns)
        #self._s2_block_correction_emus_xa_xb_xc([1, 1])
        ret = parmap(self._s2_block_correction_emus_xa_xb_xc, blocks)
        #ret = parmap(self._s2_block_correction_6s, blocks)
        #ret               = parmap(self._s2_block_correction_emus, blocks)
        self.boa = np.array([i[2] for i in ret]).reshape(self._num_blocks, self._num_blocks, toa.shape[0], \
                             self._block_size, self._block_size).transpose(2,0,3,1,4).reshape(toa.shape[0], \
                             self._num_blocks*self._block_size, self._num_blocks*self._block_size)

        del self._toa
        del self._sza
        del self._vza
        del self._saa
        del self._vaa
        del self._aod
        del self._tcwv
        del self._tco3
        del self._elevation
Exemplo n.º 9
0
    def _get_ddv_aot(self, toa, l8, tcwv, tco3, ele_data):
	ndvi_mask = (((toa[3] - 0.5*toa[5])/(toa[3] + 0.5*toa[5])) > 0.5) & (toa[5] > 0.01) & (toa[5] < 0.25) & (~self.dcloud)
	if ndvi_mask.sum() < 100:
	    self.logger.info('No enough DDV found in this sence for aot restieval, and only cams prediction used.') 
	else:
	    Hx, Hy = np.where(ndvi_mask)
            if ndvi_mask.sum() > 1000: 
	        random_choice     = np.random.choice(len(Hx), 1000, replace=False)
	        random_choice.sort()
	        Hx, Hy            = Hx[random_choice], Hy[random_choice]
	        ndvi_mask[:]      = False
	        ndvi_mask[Hx, Hy] = True
	    Hx, Hy    = np.where(ndvi_mask)
	    blue_vza  = np.cos(np.deg2rad(self.vza[0, Hx, Hy]))
            blue_sza  = np.cos(np.deg2rad(self.sza[0, Hx, Hy]))
	    red_vza   = np.cos(np.deg2rad(self.vza[2, Hx, Hy])) 
            red_sza   = np.cos(np.deg2rad(self.sza[2, Hx, Hy]))
	    blue_raa  = np.cos(np.deg2rad(self.vaa[0, Hx, Hy] - self.saa[0, Hx, Hy]))
	    red_raa   = np.cos(np.deg2rad(self.vaa[2, Hx, Hy] - self.saa[2, Hx, Hy]))
	    red, blue = toa[2, Hx, Hy], toa[0, Hx, Hy]
	    swif      = toa[5, Hx, Hy]
	    red_emus  = np.array(self.emus)[:, 3]
	    blue_emus = np.array(self.emus)[:, 1]

	    zero_aod    = np.zeros_like(red)
	    red_inputs  = np.array([red_sza,  red_vza,  red_raa,  zero_aod, tcwv[Hx, Hy], tco3[Hx, Hy], ele_data[Hx, Hy]])
	    blue_inputs = np.array([blue_sza, blue_vza, blue_raa, zero_aod, tcwv[Hx, Hy], tco3[Hx, Hy], ele_data[Hx, Hy]])
	    
	    p           = np.r_[np.arange(0, 1., 0.02), np.arange(1., 1.5, 0.05),  np.arange(1.5, 2., 0.1)]
	    f           =  lambda aot: self._ddv_cost(aot, blue, red, swif, blue_inputs, red_inputs,  blue_emus, red_emus)
	    costs       = parmap(f, p)
	    min_ind     = np.argmin(costs)
	    self.logger.info('DDV solved aod is %.02f, and it will used as the mean value for cams prediction.'% p[min_ind])
            self.aot[:] = p[min_ind]
    def fire_gaus_optimize(self, ):
        xs, ys = self.fire_shift_optimize()
        if self.costs.min() < 0.1:
            min_val = [4, 4, -15, xs - 2, ys - 2]
            max_val = [40, 40, 15, xs + 2, ys + 2]
            self.bounds = [4, 40], [4, 40], [-15,
                                             15], [xs - 2,
                                                   xs + 2], [ys - 2, ys + 2]

            ps, distributions = create_training_set(self.parameters,
                                                    min_val,
                                                    max_val,
                                                    n_train=50)
            print('Start solving...')
            self.gaus_solved = parmap(self.gaus_optimize, ps, nprocs=5)
            result = np.array(
                [np.hstack((i[0], i[1])) for i in self.gaus_solved])
            print(
                'solved psf',
                dict(
                    zip(self.parameters + [
                        'cost',
                    ], result[np.argmin(result[:, -1])])))
            return result[np.argmin(result[:, -1]), :]
        else:
            print('Cost is too large, plese check!')
            return []
    def _fill_nan(self, ):
        def fill_nan(array):
            x_shp, y_shp = array.shape
            mask = ~np.isnan(array)
            valid = np.array(np.where(mask)).T
            value = array[mask]
            mesh  = np.repeat(range(x_shp), y_shp).reshape(x_shp, y_shp), \
                    np.tile  (range(y_shp), x_shp).reshape(x_shp, y_shp)
            array = griddata(valid, value, mesh, method='nearest')
            return array

        self._vza = np.array(parmap(fill_nan, list(self._vza)))
        self._vaa = np.array(parmap(fill_nan, list(self._vaa)))
        self._saa, self._sza, self._ele, self._aot, self._tcwv, self._tco3 = \
        parmap(fill_nan, [self._saa, self._sza, self._ele, self._aot, self._tcwv, self._tco3])
        self._aot = self._aot * 1.3 - 0.08
        self._aot = np.maximum(self._aot, 0)
 def _fill_nan(self,):
     def fill_nan(array):                        
         x_shp, y_shp = array.shape                     
         mask  = ~np.isnan(array)                       
         valid = np.array(np.where(mask)).T             
         value = array[mask]                            
         mesh  = np.repeat(range(x_shp), y_shp).reshape(x_shp, y_shp), \
                 np.tile  (range(y_shp), x_shp).reshape(x_shp, y_shp)
         array = griddata(valid, value, mesh, method='nearest')
         return array
     self._vza = np.array(parmap(fill_nan, list(self._vza)))
     self._vaa = np.array(parmap(fill_nan, list(self._vaa)))
     self._saa, self._sza, self._ele, self._aot, self._tcwv, self._tco3, self._aot_unc, self._tcwv_unc, self._tco3_unc = \
     parmap(fill_nan, [self._saa, self._sza, self._ele, self._aot, self._tcwv, self._tco3, self._aot_unc, self._tcwv_unc, self._tco3_unc])
     self._aot_unc = array_to_raster(self._aot_unc, self.example_file)
     self._tcwv_unc = array_to_raster(self._tcwv_unc, self.example_file)
     self._tco3_unc = array_to_raster(self._tco3_unc, self.example_file)
Exemplo n.º 13
0
 def _load_xa_xb_xc_emus(self, ):
     xap_emu = glob(self.emus_dir + '/isotropic_%s_emulators_*_xap.pkl' %
                    (self.s2_sensor))[0]
     xbp_emu = glob(self.emus_dir + '/isotropic_%s_emulators_*_xbp.pkl' %
                    (self.s2_sensor))[0]
     xcp_emu = glob(self.emus_dir + '/isotropic_%s_emulators_*_xcp.pkl' %
                    (self.s2_sensor))[0]
     f = lambda em: pkl.load(open(em, 'rb'))
     self.emus = parmap(f, [xap_emu, xbp_emu, xcp_emu])
 def _load_xa_xb_xc_emus(self,):
     xap_emu = glob(self.emus_dir + '/isotropic_%s_emulators_correction_xap_%s.pkl'%(self.sensor, self.satellite))[0]
     xbp_emu = glob(self.emus_dir + '/isotropic_%s_emulators_correction_xbp_%s.pkl'%(self.sensor, self.satellite))[0]
     xcp_emu = glob(self.emus_dir + '/isotropic_%s_emulators_correction_xcp_%s.pkl'%(self.sensor, self.satellite))[0]
     if sys.version_info >= (3,0):
         f = lambda em: pkl.load(open(em, 'rb'), encoding = 'latin1')
     else:     
         f = lambda em: pkl.load(open(em, 'rb'))
     self.xap_emus, self.xbp_emus, self.xcp_emus = parmap(f, [xap_emu, xbp_emu, xcp_emu])
Exemplo n.º 15
0
 def fire_shift_optimize(self,):
     #self.S2_PSF_optimization()
     min_val = [-50,-50]
     max_val = [50,50]
     ps, distributions = create_training_set([ 'xs', 'ys'], min_val, max_val, n_train=50)
     self.shift_solved = parmap(self.shift_optimize, ps, nprocs=10)    
     self.paras, self.costs = np.array([i[0] for i in self.shift_solved]),np.array([i[1] for i in self.shift_solved])
     xs, ys = self.paras[self.costs==self.costs.min()][0].astype(int)
     print 'Best shift is ', xs, ys, 'with the correlation of', 1-self.costs.min()
     return xs, ys
Exemplo n.º 16
0
    def atmospheric_correction(self, ):

        self.logger.propagate = False
        self.sensor = 'OLI'
        self.logger.info('Loading emulators.')
        self._load_xa_xb_xc_emus()
        l8 = read_l8(self.l8_toa_dir,
                     self.l8_tile,
                     self.year,
                     self.month,
                     self.day,
                     bands=self.bands)
        self.l8_header = l8.header
        self.example_file = self.l8_toa_dir + '/%s_b%d.tif' % (l8.header, 1)
        self.logger.info('Reading in the reflectance.')
        self.toa = l8._get_toa()
        self.logger.info('Reading in the angles')
        self.saa, self.sza, self.vaa, self.vza = l8._get_angles()
        self.saa[self.saa.mask] = self.sza[self.sza.mask] = \
        self.vaa[self.vaa.mask] = self.vza[self.vza.mask] = np.nan
        self.aot, self.tcwv, self.tco3, self.ele = self._get_control_variables(
        )
        self.shape = self.toa.shape[1:3]
        self._block_size = 3000
        self._num_blocks_x, self._num_blocks_y = int(
            np.ceil(1. * self.shape[0] / self._block_size)), int(
                np.ceil(1. * self.shape[1] / self._block_size))
        self._mean_size = 30
        rows = np.repeat(np.arange(self._num_blocks_x), self._num_blocks_y)
        columns = np.tile(np.arange(self._num_blocks_y), self._num_blocks_x)
        blocks = zip(rows, columns)
        self.logger.info('Doing correction')
        ret = parmap(self._block_correction_emus_xa_xb_xc, blocks)
        self.boa = np.array([i[2] for i in ret]).reshape(self._num_blocks_x, self._num_blocks_y, self.toa.shape[0], \
                             self._block_size, self._block_size).transpose(2,0,3,1,4).reshape(self.toa.shape[0], \
                             self._num_blocks_x*self._block_size, self._num_blocks_y*self._block_size)[:, : self.shape[0], : self.shape[1]]
        self.boa[:,
                 gdal.Open(self.l8_toa_dir + '/%s_bqa.tif' %
                           l8.header).ReadAsArray() == 1] = np.nan
        self.toa[:,
                 gdal.Open(self.l8_toa_dir + '/%s_bqa.tif' %
                           l8.header).ReadAsArray() == 1] = np.nan
        self.boa_rgb = np.clip(
            self.boa[[3, 2, 1]].transpose(1, 2, 0) * 255 / 0.255, 0,
            255).astype(uint8)
        self.toa_rgb = np.clip(
            self.toa[[3, 2, 1]].data.transpose(1, 2, 0) * 255 / 0.255, 0,
            255).astype(uint8)
        self.logger.info('Saving corrected results')
        self._save_rgb(self.toa_rgb, 'TOA_RGB', self.example_file)
        self._save_rgb(self.boa_rgb, 'BOA_RGB', self.example_file)
        self._save_img(self.boa, self.bands)
Exemplo n.º 17
0
 def _optimization(self, ):
     #p0      = np.zeros((self.num_blocks, self.num_blocks)).ravel()
     #bot     = np.zeros((self.num_blocks, self.num_blocks)).ravel()
     #up      = np.zeros((self.num_blocks, self.num_blocks)).ravel()
     #up[:]   = 2
     #bounds  = np.array([bot, up]).T
     #p0[:]   = 0.3
     p = np.r_[np.arange(0, 1., 0.02),
               np.arange(1., 1.5, 0.05),
               np.arange(1.5, 2., 0.1)]
     costs = parmap(self._cost, p)
     min_ind = np.argmin(costs)
     return p[min_ind], costs[min_ind]
Exemplo n.º 18
0
    def _obs_cost_test(self, p, is_full=True):
        p = np.array(p).reshape(3, -1)
        X = self.control_variables.reshape(self.boa.shape[0], 7, -1)
        X[:, 3:6, :] = np.array(p)
        xap_H, xbp_H, xcp_H = [], [], []
        xap_dH, xbp_dH, xcp_dH = [], [], []
        emus = list(self.xap_emus) + list(self.xbp_emus) + list(self.xcp_emus)
        Xs = list(X) + list(X) + list(X)
        inps = zip(emus, Xs)
        ret = np.array(parmap(self._helper, inps))
        xap_H, xbp_H, xcp_H = ret[:, :, 0].reshape(3, self.boa.shape[0],
                                                   len(self.resample_hx))
        xap_dH, xbp_dH, xcp_dH = ret[:, :, 1:].reshape(3, self.boa.shape[0],
                                                       len(self.resample_hx),
                                                       3)
        y = xap_H * self.toa - xbp_H
        sur_ref = y / (1 + xcp_H * y)
        diff = sur_ref - self.boa
        full_J = np.nansum(0.5 * self.band_weights[..., None] * (diff)**2 /
                           self.boa_unc**2,
                           axis=0)
        J = np.zeros(self.full_res)
        J[self.Hx, self.Hy] = full_J
        J = np.nansum(J.reshape(self.num_blocks_x, self.block_size, \
                                self.num_blocks_y, self.block_size).sum(axis=(3,1))*self.mask)
        #dH       = -1 * (-self.toa[...,None] * xap_dH + xcp_dH * (xbp_H[...,None] - xap_H[...,None] * self.toa[...,None])**2 + \
        #                 xbp_dH) /(self.toa[...,None] * xap_H[...,None] * xcp_H[...,None] - xbp_H[...,None] * xcp_H[...,None] + 1)**2
        dH       = -1 * (-self.toa[...,None] * xap_dH - \
                         2 * self.toa[...,None] * xap_H[...,None] * xbp_H[...,None] * xcp_dH + \
                         self.toa[...,None]**2 * xap_H[...,None]**2 * xcp_dH + \
                         xbp_dH + \
                         xbp_H[...,None]**2 * xcp_dH) / \
                         (self.toa[...,None] * xap_H[...,None] * xcp_H[...,None] - \
                          xbp_H[...,None] * xcp_H[...,None] + 1)**2
        full_dJ = [
            self.band_weights[..., None] * dH[:, :, i] * diff /
            (self.boa_unc**2) for i in range(3)
        ]

        if is_full:
            dJ = np.nansum(np.array(full_dJ), axis=(1, ))
            J_ = np.zeros((3, ) + self.full_res)
            J_[:, self.Hx, self.Hy] = dJ
            J_ = np.nansum(J_.reshape(3, self.num_blocks_x, self.block_size, \
                                         self.num_blocks_y, self.block_size), axis=(4,2))
            J_[:, ~self.mask] = 0
            J_ = J_.reshape(3, -1)
        else:
            J_ = np.nansum(np.array(full_dJ), axis=(1, 2))
        return J, J_
Exemplo n.º 19
0
    def _doing_one_file(self, modis_file, timestamp):
        self.logger.info('Doing %s.' %
                         modis_file.b1.split('/')[-1].split('_EV_')[0])
        band_files = [
            getattr(modis_file, 'b%d' % band) for band in range(1, 8)
        ]
        angle_files = [
            getattr(modis_file, ang) for ang in ['sza', 'vza', 'saa', 'vaa']
        ]
        modis_toa = []
        modis_angle = []
        f = lambda fname: gdal.Open(fname).ReadAsArray()

        self.logger.info('Reading in MODIS TOA.')
        modis_toa = parmap(f, band_files)

        self.logger.info('Reading in angles.')
        modis_angle = parmap(f, angle_files)

        scale = np.array(modis_file.scale)
        offset = np.array(modis_file.offset)

        self.modis_toa = np.array(modis_toa) * np.array(
            scale)[:, None, None] + offset[:, None, None]
        self.modis_angle = np.array(modis_angle) / 100.
        self.example_file = band_files[0]
        self.sen_time = timestamp
        self.logger.info('Getting control variables')
        self.aod, self.tcwv, self.tco3, self.ele = self.get_control_variables()
        self._block_size = 480
        self._num_blocks = 2400 / self._block_size
        self._mean_size = 6
        self.band_indexs = [0, 1, 2, 3, 4, 5, 6]
        self.logger.info('Fire correction and splited into %d blocks.' %
                         self._num_blocks**2)
        self.fire_correction(self.modis_toa, self.modis_angle[0], self.modis_angle[1], self.modis_angle[2], \
                             self.modis_angle[3], self.aod, self.tcwv, self.tco3, self.ele, self.band_indexs)
Exemplo n.º 20
0
 def _get_toa(self, ):
     try:
         scale, offset = self._get_scale()
     except:
         raise IOError, 'Failed read in scalling factors.'
     bands_scale = scale[self.bands - 1]
     bands_offset = offset[self.bands - 1]
     toa          = np.array(parmap(gdal_reader, self.toa_file)).astype(float) * \
                             bands_scale[...,None, None] + bands_offset[...,None, None]
     qa_mask = self._get_qa()
     sza = self._get_angles()[1]
     toa = toa / np.cos(np.deg2rad(sza))
     toa_mask = toa < 0
     mask = qa_mask | toa_mask | sza.mask
     toa = np.ma.array(toa, mask=mask)
     return toa
    def _read_MCD43(self, fnames):
        def warp_data(fname, aoi, xRes, yRes):
            g = gdal.Warp('',fname, format = 'MEM', dstNodata=0, cutlineDSName=aoi, xRes = \
                          xRes, yRes = yRes, cropToCutline=True, resampleAlg = gdal.GRIORA_NearestNeighbour)
            return g.ReadAsArray()

        par = partial(warp_data,
                      aoi=self.aoi,
                      xRes=self.aero_res * 0.5,
                      yRes=self.aero_res * 0.5)
        n_files = int(len(fnames) / 2)
        ret = parmap(par, fnames)
        das = np.array(ret[:n_files])
        qas = np.array(ret[n_files:])
        ws = 0.618034**qas
        ws[qas == 255] = 0
        das[das == 32767] = 0
        return das, ws
Exemplo n.º 22
0
 def _load_xa_xb_xc_emus(self, ):
     if self.blue_emus is None:
         xap_emu = glob(self.emus_dir +
                        '/isotropic_%s_emulators_*_xap.pkl' %
                        (self.sensor))[0]
         xbp_emu = glob(self.emus_dir +
                        '/isotropic_%s_emulators_*_xbp.pkl' %
                        (self.sensor))[0]
         xcp_emu = glob(self.emus_dir +
                        '/isotropic_%s_emulators_*_xcp.pkl' %
                        (self.sensor))[0]
         f = lambda em: pkl.load(open(em, 'rb'))
         self.xap_emus, self.xbp_emus, self.xcp_emus = parmap(
             f, [xap_emu, xbp_emu, xcp_emu])
         self.blue_xap_emu, self.blue_xbp_emu, self.blue_xcp_emu = self.xap_emus[self.blue_in], \
                                                                   self.xbp_emus[self.blue_in], self.xcp_emus[self.blue_in]
         self.red_xap_emu,  self.red_xbp_emu,  self.red_xcp_emu  = self.xap_emus[self.red_in],  \
                                                                   self.xbp_emus[self.red_in],  self.xcp_emus[self.red_in]
     else:
         self.blue_xap_emu, self.blue_xbp_emu, self.blue_xcp_emu = self.blue_emus
         self.red_xap_emu, self.red_xbp_emu, self.red_xcp_emu = self.red_emus
Exemplo n.º 23
0
    def fire_correction(self, toa, sza, vza, saa, vaa, aod, tcwv, tco3,
                        elevation, band_indexs):
        self._toa = toa
        self._sza = sza
        self._vza = vza
        self._saa = saa
        self._vaa = vaa
        self._aod = aod
        self._tcwv = tcwv
        self._tco3 = tco3
        self._elevation = elevation
        self._band_indexs = band_indexs
        rows = np.repeat(np.arange(self._num_blocks), self._num_blocks)
        columns = np.tile(np.arange(self._num_blocks), self._num_blocks)
        blocks = zip(rows, columns)
        ret = parmap(self._block_correction_emus_xa_xb_xc, blocks)
        self.sur_ref      = np.array([i[2] for i in ret]).reshape(self._num_blocks, self._num_blocks, toa.shape[0], \
                                      self._block_size, self._block_size).transpose(2,0,3,1,4).reshape(toa.shape[0], \
                                      self._num_blocks*self._block_size, self._num_blocks*self._block_size)

        self._save_img(self.sur_ref, [1, 2, 3, 4, 5, 6, 7])
        self.boa_rgb = clip(
            self.sur_ref[[0, 3, 2], ...].transpose(1, 2, 0) * 255 / 0.25, 0,
            255.).astype(uint8)
        self.toa_rgb = clip(
            self._toa[[0, 3, 2], ...].transpose(1, 2, 0) * 255 / 0.25, 0,
            255.).astype(uint8)
        self._save_rgb(self.boa_rgb, 'BOA_RGB')
        self._save_rgb(self.toa_rgb, 'TOA_RGB')
        del self._toa
        del self._sza
        del self._vza
        del self._saa
        del self._vaa
        del self._aod
        del self._tcwv
        del self._tco3
        del self._elevation
    def _get_convolved_toa(self, ):

        imgs = [band_g.ReadAsArray() for band_g in self._toa_bands]
        self.bad_pixs = self.bad_pix[self.hx, self.hy]
        xgaus = np.exp(
            -2. * (np.pi**2) * (self.psf_xstd**2) *
            ((0.5 * np.arange(self.full_res[0]) / self.full_res[0])**2))
        ygaus = np.exp(
            -2. * (np.pi**2) * (self.psf_ystd**2) *
            ((0.5 * np.arange(self.full_res[1]) / self.full_res[1])**2))
        gaus_2d = np.outer(xgaus, ygaus)

        def convolve(img, gaus_2d, hx, hy):
            dat = idct(idct(dct(dct(img, axis=0, norm = 'ortho'), axis=1, \
                  norm='ortho') * gaus_2d, axis=1, norm='ortho'), axis=0, norm='ortho')[hx, hy]
            return dat

        par = partial(convolve, gaus_2d=gaus_2d, hx=self.hx, hy=self.hy)
        if np.array(self.ref_scale).ndim == 2:
            self.ref_scale = self.ref_scale[self.hx, self.hy]
        if np.array(self.ref_off).ndim == 2:
            self.ref_off = self.ref_off[self.hx, self.hy]
        self.toa = np.array(parmap(par, imgs)) * self.ref_scale + self.ref_off
Exemplo n.º 25
0
    def solving_s2_aerosol(self, ):

        self.s2_logger = logging.getLogger('Sentinel 2 Atmospheric Correction')
        self.s2_logger.setLevel(logging.INFO)
        if not self.s2_logger.handlers:
            ch = logging.StreamHandler()
            ch.setLevel(logging.DEBUG)
            formatter = logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
            ch.setFormatter(formatter)
            self.s2_logger.addHandler(ch)
        self.s2_logger.propagate = False

        self.s2_sensor = 'MSI'
        self.s2_logger.info('Doing Sentinel 2 tile: %s on %d-%02d-%02d.' %
                            (self.s2_tile, self.year, self.month, self.day))
        self._s2_aerosol()
        self.s2_solved = []
        if self.aero_res < 500:
            self.s2_logger.warning(
                'The best resolution of aerosol should be larger \
                                     than 500 meters (inlcude), so it is set to 500 meters.'
            )
            self.aero_res = 500
        self.block_size = int(self.aero_res / 10)
        num_blocks = int(np.ceil(10980 / self.block_size))
        self.s2_logger.info('Start solving...')
        #for i in range(num_blocks):
        #    for j in range(num_blocks):
        #        self.s2_logger.info('Doing block %03d-%03d.'%(i+1,j+1))
        #        self._s2_block_solver([i,j])
        blocks = zip(np.repeat(range(num_blocks), num_blocks),
                     np.tile(range(num_blocks), num_blocks))
        self.s2_solved = parmap(self._s2_block_solver, blocks)
        inds = np.array([[i[0], i[1]] for i in self.s2_solved])
        rets = np.array([i[2][0] for i in self.s2_solved])

        aod_map = np.zeros((num_blocks, num_blocks))
        aod_map[:] = np.nan
        tcwv_map = aod_map.copy()
        tco3_map = aod_map.copy()

        aod_map[inds[:, 0], inds[:, 1]] = rets[:, 0]
        tcwv_map[inds[:, 0], inds[:, 1]] = rets[:, 1]
        tco3_map[inds[:, 0], inds[:, 1]] = rets[:, 2]
        aod_map, tcwv_map, tco3_map    = np.where(~np.isnan(aod_map),  aod_map,  np.nanmean(aod_map)), \
                                         np.where(~np.isnan(tcwv_map), tcwv_map, np.nanmean(tcwv_map)), \
                                         np.where(~np.isnan(tco3_map), tco3_map, np.nanmean(tco3_map))
        para_names = 'aot', 'tcwv', 'tco3'

        g = gdal.Open(self.s2_file_dir + '/B04.jp2')
        xmin, ymax = g.GetGeoTransform()[0], g.GetGeoTransform()[3]
        projection = g.GetProjection()

        results = []
        self.s2_logger.info(
            'Finished retrieval and saving them into local files.')
        for i, para_map in enumerate([aod_map, tcwv_map, tco3_map]):
            s = smoothn(para_map.copy(), isrobust=True, verbose=False)[1]
            smed = smoothn(para_map.copy(), isrobust=True, verbose=False,
                           s=s)[0]
            xres, yres = self.block_size * 10, self.block_size * 10
            geotransform = (xmin, xres, 0, ymax, 0, -yres)
            nx, ny = smed.shape
            dst_ds = gdal.GetDriverByName('GTiff').Create(self.s2_file_dir + \
                                          '/%s.tif'%para_names[i], ny, nx, 1, gdal.GDT_Float32)
            dst_ds.SetGeoTransform(geotransform)
            dst_ds.SetProjection(projection)
            dst_ds.GetRasterBand(1).WriteArray(smed)
            dst_ds.FlushCache()
            dst_ds = None
            results.append(smed)
        self.aot_map, self.tcwv_map, self.tco3_map = results
Exemplo n.º 26
0
    def _s2_aerosol(self, ):

        self.s2_logger.propagate = False
        self.s2_logger.info('Start to retrieve atmospheric parameters.')
        self.s2 = read_s2(self.s2_toa_dir, self.s2_tile, self.year, self.month,
                          self.day, self.s2_u_bands)
        self.s2_logger.info('Reading in TOA reflectance.')
        selected_img = self.s2.get_s2_toa()
        self.s2_file_dir = self.s2.s2_file_dir
        self.s2.get_s2_cloud()
        self.s2_logger.info(
            'Find corresponding pixels between S2 and MODIS tiles')
        tiles = Find_corresponding_pixels(self.s2.s2_file_dir + '/B04.jp2',
                                          destination_res=500)
        if len(tiles.keys()) > 1:
            self.s2_logger.info('This sentinel 2 tile covers %d MODIS tile.' %
                                len(tiles.keys()))
        self.mcd43_files = []
        szas, vzas, saas, vaas, raas = [], [], [], [], []
        boas, boa_qas, brdf_stds, Hxs, Hys = [], [], [], [], []
        for key in tiles.keys():
            #h,v = int(key[1:3]), int(key[-2:])
            self.s2_logger.info('Getting BOA from MODIS tile: %s.' % key)
            mcd43_file = glob(self.mcd43_tmp %
                              (self.mcd43_dir, self.year, self.doy, key))[0]
            self.mcd43_files.append(mcd43_file)
            self.H_inds, self.L_inds = tiles[key]
            Lx, Ly = self.L_inds
            Hx, Hy = self.H_inds
            Hxs.append(Hx)
            Hys.append(Hy)
            self.s2_logger.info(
                'Getting the angles and simulated surface reflectance.')
            self.s2.get_s2_angles(self.reconstruct_s2_angle)

            self.s2_angles = np.zeros((4, 6, len(Hx)))
            for j, band in enumerate(self.s2_u_bands[:-2]):
                self.s2_angles[[0,2],j,:] = self.s2.angles['vza'][band][Hx, Hy], \
                                            self.s2.angles['vaa'][band][Hx, Hy]
                self.s2_angles[[1,3],j,:] = self.s2.angles['sza'][Hx, Hy], \
                                                          self.s2.angles['saa'][Hx, Hy]

#use mean value to fill bad values
            for i in range(4):
                mask = ~np.isfinite(self.s2_angles[i])
                if mask.sum() > 0:
                    self.s2_angles[i][mask] = np.interp(np.flatnonzero(mask), \
                     np.flatnonzero(~mask),  self.s2_angles[i][~mask]) # simple interpolation
            vza, sza = self.s2_angles[:2]
            vaa, saa = self.s2_angles[2:]
            raa = vaa - saa
            szas.append(sza)
            vzas.append(vza)
            raas.append(raa)
            vaas.append(vaa)
            saas.append(saa)
            # get the simulated surface reflectance
            s2_boa, s2_boa_qa, brdf_std = get_brdf_six(mcd43_file, angles=[vza, sza, raa],\
                                                              bands=(3,4,1,2,6,7), Linds= [Lx, Ly])
            boas.append(s2_boa)
            boa_qas.append(s2_boa_qa)
            brdf_stds.append(brdf_std)

        self.s2_boa = np.hstack(boas)
        self.s2_boa_qa = np.hstack(boa_qas)
        self.brdf_stds = np.hstack(brdf_stds)
        self.Hx = np.hstack(Hxs)
        self.Hy = np.hstack(Hys)
        vza = np.hstack(vzas)
        sza = np.hstack(szas)
        vaa = np.hstack(vaas)
        saa = np.hstack(saas)
        raa = np.hstack(raas)
        self.s2_angles = np.array([vza, sza, vaa, saa])
        #self.s2_boa, self.s2_boa_qa = self.s2_boa.flatten(), self.s2_boa_qa.flatten()
        self.s2_logger.info('Applying spectral transform.')
        self.s2_boa = self.s2_boa*np.array(self.s2_spectral_transform)[0,:-1][...,None] + \
                                  np.array(self.s2_spectral_transform)[1,:-1][...,None]
        self.s2_logger.info('Getting elevation.')
        ele_data = reproject_data(self.global_dem,
                                  self.s2.s2_file_dir + '/B04.jp2',
                                  outputType=gdal.GDT_Float32).data
        mask = ~np.isfinite(ele_data)
        ele_data = np.ma.array(ele_data, mask=mask) / 1000.
        self.elevation = ele_data[self.Hx, self.Hy]

        self.s2_logger.info('Getting pripors from ECMWF forcasts.')
        sen_time_str = json.load(
            open(self.s2.s2_file_dir + '/tileInfo.json', 'r'))['timestamp']
        self.sen_time = datetime.datetime.strptime(sen_time_str,
                                                   u'%Y-%m-%dT%H:%M:%S.%fZ')
        example_file = self.s2.s2_file_dir + '/B04.jp2'
        aod, tcwv, tco3 = np.array(self._read_cams(example_file))[:, self.Hx,
                                                                  self.Hy]
        self.s2_aod550 = aod  #* (1-0.14) # validation of +14% biase
        self.s2_tco3 = tco3 * 46.698  #* (1 - 0.05)
        tcwv = tcwv / 10.
        self.s2_tco3_unc = np.ones(self.s2_tco3.shape) * 0.2
        self.s2_aod550_unc = np.ones(self.s2_aod550.shape) * 0.5

        self.s2_logger.info(
            'Trying to get the tcwv from the emulation of sen2cor look up table.'
        )

        #try:
        self._get_tcwv(selected_img, vza, sza, raa, ele_data)
        #except:
        #    self.s2_logger.warning('Getting tcwv from the emulation of sen2cor look up table failed, ECMWF data used.')
        #    self.s2_tcwv     = tcwv
        #    self.s2_tcwv_unc = np.ones(self.s2_tcwv.shape) * 0.2

        self.s2_logger.info('Trying to get the aod from ddv method.')
        try:
            solved = self._get_ddv_aot(self.s2.angles, example_file,
                                       self.s2_tcwv, ele_data, selected_img)
            if solved[0] < 0:
                self.s2_logger.warning(
                    'DDV failed and only cams data used for the prior.')
            else:
                self.s2_logger.info(
                    'DDV solved aod is %.02f, and it will used as the mean value of cams prediction.'
                    % solved[0])
                self.s2_aod550 += (solved[0] - self.s2_aod550.mean())
        except:
            self.s2_logger.warning('Getting aod from ddv failed.')
        self.s2_logger.info('Applying PSF model.')
        if self.s2_psf is None:
            self.s2_logger.info('No PSF parameters specified, start solving.')
            high_img = np.repeat(
                np.repeat(selected_img['B11'], 2, axis=0), 2, axis=1) * 0.0001
            high_indexs = self.Hx, self.Hy
            low_img = self.s2_boa[4]
            qa, cloud = self.s2_boa_qa[4], self.s2.cloud
            psf = psf_optimize(high_img, high_indexs, low_img, qa, cloud, 2)
            xs, ys = psf.fire_shift_optimize()
            xstd, ystd = 29.75, 39
            ang = 0
            self.s2_logger.info('Solved PSF parameters are: %.02f, %.02f, %d, %d, %d, and the correlation is: %f.' \
                                 %(xstd, ystd, 0, xs, ys, 1-psf.costs.min()))
        else:
            xstd, ystd, ang, xs, ys = self.s2_psf
        # apply psf shifts without going out of the image extend
        shifted_mask = np.logical_and.reduce(
            ((self.Hx + int(xs) >= 0),
             (self.Hx + int(xs) < self.s2_full_res[0]),
             (self.Hy + int(ys) >= 0),
             (self.Hy + int(ys) < self.s2_full_res[0])))

        self.Hx, self.Hy = self.Hx[shifted_mask] + int(
            xs), self.Hy[shifted_mask] + int(ys)
        #self.Lx, self.Ly = self.Lx[shifted_mask], self.Ly[shifted_mask]
        self.s2_boa = self.s2_boa[:, shifted_mask]
        self.s2_boa_qa = self.s2_boa_qa[:, shifted_mask]
        self.s2_angles = self.s2_angles[:, :, shifted_mask]
        self.elevation = self.elevation[shifted_mask]
        self.s2_aod550 = self.s2_aod550[shifted_mask]
        self.s2_tcwv = self.s2_tcwv[shifted_mask]
        self.s2_tco3 = self.s2_tco3[shifted_mask]

        self.s2_aod550_unc = self.s2_aod550_unc[shifted_mask]
        self.s2_tcwv_unc = self.s2_tcwv_unc[shifted_mask]
        self.s2_tco3_unc = self.s2_tco3_unc[shifted_mask]
        self.brdf_stds = self.brdf_stds[:, shifted_mask]

        self.s2_logger.info('Getting the convolved TOA reflectance.')
        self.valid_pixs = sum(
            shifted_mask)  # count how many pixels is still within the s2 tile
        ker_size = 2 * int(round(max(1.96 * xstd, 1.96 * ystd)))
        self.bad_pixs = np.zeros(self.valid_pixs).astype(bool)
        imgs = []
        for i, band in enumerate(self.s2_u_bands[:-2]):
            if selected_img[band].shape != self.s2_full_res:
                selected_img[band] = self.repeat_extend(selected_img[band],
                                                        shape=self.s2_full_res)
            else:
                pass
            selected_img[band][0, :] = -9999
            selected_img[band][-1, :] = -9999
            selected_img[band][:, 0] = -9999
            selected_img[band][:, -1] = -9999
            imgs.append(selected_img[band])
            # filter out the bad pixels
            self.bad_pixs |= cloud_dilation(self.s2.cloud |\
                                            (selected_img[band] <= 0) | \
                                            (selected_img[band] >= 10000),\
                                            iteration= ker_size/2)[self.Hx, self.Hy]
        del selected_img
        del self.s2.selected_img
        del high_img
        del self.s2.angles
        del self.s2.sza
        del self.s2.saa
        del self.s2
        ker = self.gaussian(xstd, ystd, ang)
        f = lambda img: signal.fftconvolve(img, ker, mode='same')[self.Hx, self
                                                                  .Hy] * 0.0001
        half = parmap(f, imgs[:3])
        self.s2_toa = np.array(half + parmap(f, imgs[3:]))
        #self.s2_toa = np.array(parmap(f,imgs))
        del imgs
        # get the valid value masks
        qua_mask = np.all(self.s2_boa_qa <= self.qa_thresh, axis=0)

        boa_mask = np.all(~self.s2_boa.mask,axis = 0 ) &\
                          np.all(self.s2_boa > 0, axis = 0) &\
                          np.all(self.s2_boa < 1, axis = 0)
        toa_mask = (~self.bad_pixs) &\
                    np.all(self.s2_toa > 0, axis = 0) &\
                    np.all(self.s2_toa < 1, axis = 0)
        self.s2_mask = boa_mask & toa_mask & qua_mask & (~self.elevation.mask)
        self.s2_AEE, self.s2_bounds = self._load_emus(self.s2_sensor)
Exemplo n.º 27
0
    aod_unc[:] = 0.5
    tcwv_unc[:] = 0.2
    tco3_unc[:] = 0.2
    toa = np.random.rand(6, 50000)
    y = toa * 2.639794 - 0.038705
    boa = y / (1 + 0.068196 * y)
    boa_unc = np.ones(50000) * 0.05
    Hx = np.random.choice(10980, 50000)
    Hy = np.random.choice(10980, 50000)
    full_res = (10980, 10980)
    aero_res = 3050
    emus_dir = '/home/ucfafyi/DATA/Multiply/emus/'
    sensor = 'msi'
    xap_emu = glob(emus_dir + '/isotropic_%s_emulators_*_xap.pkl' %
                   (sensor))[0]
    xbp_emu = glob(emus_dir + '/isotropic_%s_emulators_*_xbp.pkl' %
                   (sensor))[0]
    xcp_emu = glob(emus_dir + '/isotropic_%s_emulators_*_xcp.pkl' %
                   (sensor))[0]
    f = lambda em: pkl.load(open(em, 'rb'))
    emus = parmap(f, [xap_emu, xbp_emu, xcp_emu])
    band_indexs = [1, 2, 3, 7, 11, 12]
    band_wavelength = [469, 555, 645, 869, 1640, 2130]
    mask = np.zeros((10980, 10980)).astype(bool)
    mask[1, 1] = True
    aero = solving_atmo_paras(boa, toa, sza, vza, saa, vaa, aod, tcwv, tco3,
                              ele, aod_unc, tcwv_unc, tco3_unc, boa_unc, Hx,
                              Hy, mask, full_res, aero_res, emus, band_indexs,
                              band_wavelength)
    solved = aero._optimization()
Exemplo n.º 28
0
    def solving_modis_aerosol(self, ):

        self.modis_logger = logging.getLogger('MODIS Atmospheric Correction')
        self.modis_logger.setLevel(logging.INFO)
        if not self.modis_logger.handlers:
            ch = logging.StreamHandler()
            ch.setLevel(logging.DEBUG)
            formatter = logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
            ch.setFormatter(formatter)
            self.modis_logger.addHandler(ch)
        self.modis_logger.propagate = False

        self.modis_sensor = 'TERRA'
        self._modis_aerosol()
        self.modis_solved = []
        if self.aero_res < 500:
            self.modis_logger.warning(
                'The best resolution of aerosol should be larger \
                                     than 500 meters (inlcude), so it is set to 500 meters.'
            )
            self.aero_res = 500
        self.block_size = int(self.aero_res / 500)
        num_blocks = int(np.ceil(2400 / self.block_size))
        self.modis_logger.info('Start solving......')
        blocks = zip(np.repeat(range(num_blocks), num_blocks),
                     np.tile(range(num_blocks), num_blocks))
        self.modis_solved = parmap(self._m_block_solver, blocks)
        #for i in range(num_blocks):
        #    for j in range(num_blocks):
        #        self.modis_logger.info('Doing block %03d-%03d.'%(i+1,j+1))
        #        self._m_block_solver([i,j])

        inds = np.array([[i[0], i[1]] for i in self.modis_solved])
        rets = np.array([i[2][0] for i in self.modis_solved])

        aod_map = np.zeros((num_blocks, num_blocks))
        aod_map[:] = np.nan
        tcwv_map = aod_map.copy()
        tco3_map = aod_map.copy()

        aod_map[inds[:, 0], inds[:, 1]] = rets[:, 0]
        tcwv_map[inds[:, 0], inds[:, 1]] = rets[:, 1]
        tco3_map[inds[:, 0], inds[:, 1]] = rets[:, 2]
        para_names = 'aod550', 'tcwv', 'tco3'

        g = gdal.Open(self.example_file)
        xmin, ymax = g.GetGeoTransform()[0], g.GetGeoTransform()[3]
        projection = g.GetProjection()

        results = []
        self.modis_logger.info(
            'Finished retrieval and saving them into local files.')
        for i, para_map in enumerate([aod_map, tcwv_map, tco3_map]):
            s = smoothn(para_map.copy(), isrobust=True, verbose=False)[1]
            smed = smoothn(para_map.copy(), isrobust=True, verbose=False,
                           s=s)[0]
            xres, yres = self.block_size * 500, self.block_size * 500
            geotransform = (xmin, xres, 0, ymax, 0, -yres)
            nx, ny = smed.shape
            dst_ds = gdal.GetDriverByName('GTiff').Create(self.mod_l1b_dir + '/atmo_paras/' + \
                                                          self.example_file.split('/')[-1].split('_EV_')[0] \
                                                          + '_EV_%s.tif'%para_names[i], ny, nx, 1, gdal.GDT_Float32)

            dst_ds.SetGeoTransform(geotransform)
            dst_ds.SetProjection(projection)
            dst_ds.GetRasterBand(1).WriteArray(smed)
            dst_ds.FlushCache()
            dst_ds = None
            results.append(smed)
        self.aod550_map, self.tcwv_map, self.tco3_map = results
Exemplo n.º 29
0
    def get_s2_angles(self, reconstruct=True, slic=None):

        tree = ET.parse(self.s2_file_dir + '/metadata.xml')
        root = tree.getroot()
        #Sun_Angles_Grid
        saa = []
        sza = []
        msz = []
        msa = []
        #Viewing_Incidence_Angles_Grids
        vza = {}
        vaa = {}
        mvz = {}
        mva = {}
        for child in root:
            for j in child:
                for k in j.findall('Sun_Angles_Grid'):
                    for l in k.findall('Zenith'):
                        for m in l.findall('Values_List'):
                            for x in m.findall('VALUES'):
                                sza.append(x.text.split())

                    for n in k.findall('Azimuth'):
                        for o in n.findall('Values_List'):
                            for p in o.findall('VALUES'):
                                saa.append(p.text.split())

                for ms in j.findall('Mean_Sun_Angle'):
                    self.msz = float(ms.find('ZENITH_ANGLE').text)
                    self.msa = float(ms.find('AZIMUTH_ANGLE').text)

                for k in j.findall('Viewing_Incidence_Angles_Grids'):
                    for l in k.findall('Zenith'):
                        for m in l.findall('Values_List'):
                            vza_sub = []
                            for x in m.findall('VALUES'):
                                vza_sub.append(x.text.split())
                            bi, di, angles = k.attrib['bandId'], \
                                                                  k.attrib['detectorId'], np.array(vza_sub).astype(float)
                            vza[(int(bi), int(di))] = angles

                    for n in k.findall('Azimuth'):
                        for o in n.findall('Values_List'):
                            vaa_sub = []
                            for p in o.findall('VALUES'):
                                vaa_sub.append(p.text.split())
                            bi, di, angles = k.attrib['bandId'],\
                                                                  k.attrib['detectorId'], np.array(vaa_sub).astype(float)
                            vaa[(int(bi), int(di))] = angles

                for mvia in j.findall('Mean_Viewing_Incidence_Angle_List'):
                    for i in mvia.findall('Mean_Viewing_Incidence_Angle'):
                        mvz[int(i.attrib['bandId'])] = float(
                            i.find('ZENITH_ANGLE').text)
                        mva[int(i.attrib['bandId'])] = float(
                            i.find('AZIMUTH_ANGLE').text)
        sza = np.array(sza).astype(float)
        saa = np.array(saa).astype(float)
        saa[saa > 180] = saa[saa > 180] - 360
        mask = np.isnan(sza)
        sza  = griddata(np.array(np.where(~mask)).T, sza[~mask], \
                       (np.repeat(range(23), 23).reshape(23,23), \
                        np.tile  (range(23), 23).reshape(23,23)), method='nearest')
        mask = np.isnan(saa)
        saa  = griddata(np.array(np.where(~mask)).T, saa[~mask], \
                       (np.repeat(range(23), 23).reshape(23,23), \
                        np.tile  (range(23), 23).reshape(23,23)), method='nearest')
        self.saa, self.sza = np.repeat(np.repeat(np.array(saa), 500, axis = 0), 500, axis = 1)[:10980, :10980], \
                             np.repeat(np.repeat(np.array(sza), 500, axis = 0), 500, axis = 1)[:10980, :10980]
        dete_id = np.unique([i[1] for i in vaa.keys()])
        band_id = range(13)
        bands_vaa = []
        bands_vza = []
        for i in band_id:
            band_vaa = np.zeros((23, 23))
            band_vza = np.zeros((23, 23))
            band_vaa[:] = np.nan
            band_vza[:] = np.nan
            for j in dete_id:
                try:
                    good = ~np.isnan(vaa[(i, j)])
                    band_vaa[good] = vaa[(i, j)][good]
                    good = ~np.isnan(vza[(i, j)])
                    band_vza[good] = vza[(i, j)][good]
                except:
                    pass
            bands_vaa.append(band_vaa)
            bands_vza.append(band_vza)
        bands_vaa, bands_vza = np.array(bands_vaa), np.array(bands_vza)
        vaa = {}
        vza = {}
        mva_ = {}
        mvz_ = {}
        for i, band in enumerate(self.s2_bands):
            vaa[band] = bands_vaa[i]
            vza[band] = bands_vza[i]
            try:
                mva_[band] = mva[i]
                mvz_[band] = mvz[i]
            except:
                mva_[band] = np.nan
                mvz_[band] = np.nan

        if self.bands is None:
            bands = self.s2_bands
        else:
            bands = self.bands
        self.vza = {}
        self.vaa = {}
        self.mvz = {}
        self.mva = {}
        for band in bands:
            mask = np.isnan(vza[band])
            g_vza = griddata(np.array(np.where(~mask)).T, vza[band][~mask], \
                            (np.repeat(range(23), 23).reshape(23,23), \
                             np.tile  (range(23), 23).reshape(23,23)), method='nearest')
            mask = np.isnan(vaa[band])
            g_vaa = griddata(np.array(np.where(~mask)).T, vaa[band][~mask], \
                            (np.repeat(range(23), 23).reshape(23,23), \
                             np.tile  (range(23), 23).reshape(23,23)), method='nearest')
            self.vza[band] = np.repeat(np.repeat(g_vza, 500, axis=0),
                                       500,
                                       axis=1)[:10980, :10980]
            g_vaa[g_vaa > 180] = g_vaa[g_vaa > 180] - 360
            self.vaa[band] = np.repeat(np.repeat(g_vaa, 500, axis=0),
                                       500,
                                       axis=1)[:10980, :10980]
            self.mvz[band] = mvz_[band]
            self.mva[band] = mva_[band]
        self.angles = {'sza':self.sza, 'saa':self.saa, 'msz':self.msz, 'msa':self.msa,\
                              'vza':self.vza, 'vaa': self.vaa, 'mvz':self.mvz, 'mva':self.mva}

        if reconstruct:
            try:
                if len(glob(self.s2_file_dir + '/angles/VAA_VZA_*.img')) == 13:
                    pass
                else:
                    #print 'Reconstructing Sentinel 2 angles...'
                    subprocess.call(['python', './python/s2a_angle_bands_mod.py', \
                        self.s2_file_dir+'/metadata.xml',  '10'])

                if self.bands is None:
                    bands = self.s2_bands
                else:
                    bands = self.bands

                self.vaa = {}
                self.vza = {}
                fname = [
                    self.s2_file_dir + '/angles/VAA_VZA_%s.img' % band
                    for band in bands
                ]
                if len(glob(self.s2_file_dir + '/angles/VAA_VZA_*.img')) == 13:
                    f = lambda fn: reproject_data(
                        fn,
                        self.s2_file_dir + '/B04.jp2',
                        outputType=gdal.GDT_Float32).data
                    ret = parmap(f, fname)
                    for i, angs in enumerate(ret):
                        #angs[0][angs[0]<0] = (36000 + angs[0][angs[0]<0])
                        angs = angs.astype(float) / 100.
                        if slic is None:
                            self.vaa[bands[i]] = angs[0]
                            self.vza[bands[i]] = angs[1]
                        else:
                            x_ind, y_ind = np.array(slic)
                            self.vaa[bands[i]] = angs[0][x_ind, y_ind]
                            self.vza[bands[i]] = angs[1][x_ind, y_ind]
                    self.angles = {'sza':self.sza, 'saa':self.saa, 'msz':self.msz, 'msa':self.msa,\
                                      'vza':self.vza, 'vaa': self.vaa, 'mvz':self.mvz, 'mva':self.mva}
                else:
                    print 'Reconstruct failed and original angles are used.'
            except:
                print 'Reconstruct failed and original angles are used.'
Exemplo n.º 30
0
    def _l8_aerosol(self,):
        self.logger.propagate = False
        self.logger.info('Start to retrieve atmospheric parameters.')
        l8             = read_l8(self.l8_toa_dir, self.l8_tile, self.year, self.month, self.day, bands = self.bands)
        self.l8_header = l8.header
        self.logger.info('Loading emulators.')
        self._load_xa_xb_xc_emus()
        self.logger.info('Find corresponding pixels between L8 and MODIS tiles')
        self.example_file = self.l8_toa_dir + '/%s_b%d.tif'%(l8.header, 1)
        if len(glob(self.l8_toa_dir + '/MCD43_%s.npz'%(l8.header))) == 0:
            boa, unc, hx, hy, lx, ly, flist = MCD43_SurRef(self.mcd43_dir, self.example_file, \
                                                           self.year, self.doy, [l8.saa_sza, l8.vaa_vza], 
                                                           sun_view_ang_scale=[0.01, 0.01], bands = [3,4,1,2,6,7], tolz=0.003)
            np.savez(self.l8_toa_dir + 'MCD43_%s.npz'%l8.header, boa=boa, unc=unc, hx=hx, hy=hy, lx=lx, ly=ly, flist=flist) 
        else:
            f = np.load(self.l8_toa_dir + 'MCD43_%s.npz'%l8.header)
            boa, unc, hx, hy, lx, ly, flist = f['boa'], f['unc'], f['hx'], f['hy'], f['lx'], f['ly'], f['flist']
        self.Hx, self.Hy = hx, hy
        self.logger.info('Applying spectral transform.')
        self.boa_qa = np.ma.array(unc)
        self.boa    = np.ma.array(boa)*np.array(self.spectral_transform)[0][...,None] + \
                                       np.array(self.spectral_transform)[1][...,None]
        self.logger.info('Reading in TOA reflectance.')
        self.sen_time = l8.sen_time

        self.cloud    = l8._get_qa()
        self.full_res = self.cloud.shape
        self.ecloud   = binary_erosion(self.cloud, structure=np.ones((3,3)).astype(bool), iterations=10).astype(bool)
        border_mask   = np.zeros(self.full_res).astype(bool)
        border_mask[[0, -1], :] = True
        border_mask[:, [0, -1]] = True
        xstd, ystd    = 12., 20.
        ker_size      = 2*int(round(max(1.96*xstd, 1.96*ystd)))
        self.dcloud   = binary_dilation(self.ecloud | border_mask, structure=np.ones((3,3)).astype(bool), iterations=ker_size/2+10).astype(bool)

        self.logger.info('Getting elevation.')
        ele_data = reproject_data(self.global_dem, self.example_file, outputType = gdal.GDT_Float32).data/1000.
        mask     = ~np.isfinite(ele_data)
        self.ele = np.ma.array(ele_data, mask = mask)
        self.ele[mask] = np.nan

        self.logger.info('Getting pripors from ECMWF forcasts.')
        self.aot, self.tcwv, self.tco3    = np.array(self._read_cams(self.example_file))
        self.logger.info('Mean values of priors are: %.02f, %.02f, %.02f'%\
                         (np.nanmean(self.aot), np.nanmean(self.tcwv), np.nanmean(self.tco3)))
        self.toa        = l8._get_toa()
        self.saa, self.sza, self.vaa, self.vza = l8._get_angles()
        self.saa[self.saa.mask] = self.sza[self.sza.mask] = \
        self.vaa[self.vaa.mask] = self.vza[self.vza.mask] = np.nan
        self.logger.info('Getting DDV aot prior')
        self._get_ddv_aot(self.toa, l8, self.tcwv, self.tco3, ele_data)
        self.logger.info('Sorting data.')
        self.block_size = int(np.ceil(1. * self.aero_res / 30.))
        self.num_blocks = int(np.ceil(max(self.full_res) / (1. * self.block_size)))
        self.efull_res  = self.block_size * self.num_blocks
        shape1    =                    (self.num_blocks, self.block_size, self.num_blocks, self.block_size)
        shape2    = (self.vza.shape[0], self.num_blocks, self.block_size, self.num_blocks, self.block_size) 
        self.ele  = np.nanmean(self._extend_vals(self.ele ).reshape(shape1), axis=(3,1))
        self.aot  = np.nanmean(self._extend_vals(self.aot ).reshape(shape1), axis=(3,1))
        self.tcwv = np.nanmean(self._extend_vals(self.tcwv).reshape(shape1), axis=(3,1))
        self.tco3 = np.nanmean(self._extend_vals(self.tco3).reshape(shape1), axis=(3,1))
        self.saa  = np.nanmean(self._extend_vals(self.saa ).reshape(shape2), axis=(4,2))
        self.sza  = np.nanmean(self._extend_vals(self.sza ).reshape(shape2), axis=(4,2))
        self.vaa  = np.nanmean(self._extend_vals(self.vaa ).reshape(shape2), axis=(4,2))
        self.vza  = np.nanmean(self._extend_vals(self.vza ).reshape(shape2), axis=(4,2))
        self.aot_unc    = np.ones(self.aot.shape)  * 0.8
        self.tcwv_unc   = np.ones(self.tcwv.shape) * 0.2
        self.tco3_unc   = np.ones(self.tco3.shape) * 0.2
        #mod08_aot, myd08_aot = self._mcd08_aot()
        #self.logger.info('Mean values for priors are: %.02f, %.02f, %.02f and mod08 and myd08 aot are: %.02f, %.02f'%\
        #                 (np.nanmean(self.aot), np.nanmean(self.tcwv), np.nanmean(self.tco3), mod08_aot, myd08_aot))
        #if np.isnan(mod08_aot):
        self.aot[:]    = np.nanmean(self.aot)
        #else:
        #    temp        = np.zeros_like(self.aot)
        #    temp[:]     = mod08_aot
        #    self.aot    = temp
        self.logger.info('Applying PSF model.')
        if self.l8_psf is None:
            xstd, ystd, ang, xs, ys = self._get_psf()
        else:
            xstd, ystd, ang, xs, ys = self.l8_psf

        shifted_mask = np.logical_and.reduce(((self.Hx+int(xs)>=0),
                                              (self.Hx+int(xs)<self.full_res[0]),
                                              (self.Hy+int(ys)>=0),
                                              (self.Hy+int(ys)<self.full_res[1])))

        self.Hx, self.Hy = self.Hx[shifted_mask]+int(xs), self.Hy[shifted_mask]+int(ys)
        self.boa      = self.boa   [:, shifted_mask]
        self.boa_qa   = self.boa_qa[:, shifted_mask]

        self.logger.info('Getting the convolved TOA reflectance.')
        self.bad_pixs = self.dcloud[self.Hx, self.Hy]
        ker           = self.gaussian(xstd, ystd, ang)
        f             = lambda img: signal.fftconvolve(img, ker, mode='same')[self.Hx, self.Hy]
        self.toa      = np.array(parmap(f, list(self.toa)))

        qua_mask = np.all(self.boa_qa <= self.qa_thresh, axis = 0)
        boa_mask = np.all(~self.boa.mask,axis = 0 ) &\
                          np.all(self.boa >= 0.001, axis = 0) &\
                          np.all(self.boa < 1, axis = 0)
        toa_mask =       (~self.bad_pixs) &\
                          np.all(self.toa >= 0.0001, axis = 0) &\
                          np.all(self.toa < 1., axis = 0)
        self.l8_mask = boa_mask & toa_mask & qua_mask
        self.Hx      = self.Hx       [self.l8_mask]
        self.Hy      = self.Hy       [self.l8_mask]
        self.toa     = self.toa   [:, self.l8_mask]
        self.boa     = self.boa   [:, self.l8_mask]
        self.boa_unc = self.boa_qa[:, self.l8_mask]
        self.logger.info('Solving...')
        tempm = np.zeros((self.efull_res, self.efull_res))
        tempm[self.Hx, self.Hy] = 1
        tempm = tempm.reshape(self.num_blocks, self.block_size, \
                              self.num_blocks, self.block_size).astype(int).sum(axis=(3,1))
        self.mask = np.nansum(self._extend_vals((~self.dcloud).astype(int)).reshape(shape1), axis=(3,1))
        self.mask = ((self.mask/((1.*self.block_size)**2)) > 0.) & ((tempm/((self.aero_res/500.)**2)) > 0.) & \
                     (np.any(~np.isnan([self.aot, self.tcwv, self.tco3, self.sza[0]]), axis = 0))
        self.mask = binary_erosion(self.mask, structure=np.ones((5, 5)).astype(bool))
        self.tcwv[~self.mask] = np.nanmean(self.tcwv)
        self.tco3[~self.mask] = np.nanmean(self.tco3)
        self.aero = solving_atmo_paras(self.boa,
                                  self.toa,
                                  self.sza,
                                  self.vza,
                                  self.saa,
                                  self.vaa,
                                  self.aot,
                                  self.tcwv,
                                  self.tco3,
                                  self.ele,
                                  self.aot_unc,
                                  self.tcwv_unc,
                                  self.tco3_unc,
                                  self.boa_unc,
                                  self.Hx, self.Hy,
                                  self.mask,
                                  (self.efull_res, self.efull_res),
                                  self.aero_res,
                                  self.emus,
                                  self.band_indexs,
                                  self.boa_bands,
                                  gamma = 2.,
                                  alpha   = -1.2,
                                  pix_res = 30)
        solved    = self.aero._optimization()
        return solved