def test_net(visualise, cache_scoremaps, development):
    logging.basicConfig(level=logging.INFO)

    cfg = load_config()
    dataset = create_dataset(cfg)
    dataset.set_shuffle(False)

    sm = SpatialModel(cfg)
    sm.load()

    draw_multi = PersonDraw()

    from_cache = "cached_scoremaps" in cfg
    if not from_cache:
        sess, inputs, outputs = setup_pose_prediction(cfg)

    if cache_scoremaps:
        out_dir = cfg.scoremap_dir
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    pairwise_stats = dataset.pairwise_stats
    num_images = dataset.num_images if not development else min(
        10, dataset.num_images)
    coco_results = []

    for k in range(num_images):
        print('processing image {}/{}'.format(k, num_images - 1))

        batch = dataset.next_batch()

        cache_name = "{}.mat".format(batch[Batch.data_item].coco_id)

        if not from_cache:
            outputs_np = sess.run(outputs,
                                  feed_dict={inputs: batch[Batch.inputs]})
            scmap, locref, pairwise_diff = extract_cnn_output(
                outputs_np, cfg, pairwise_stats)

            if cache_scoremaps:
                if visualise:
                    img = np.squeeze(batch[Batch.inputs]).astype('uint8')
                    pose = argmax_pose_predict(scmap, locref, cfg.stride)
                    arrows = argmax_arrows_predict(scmap, locref,
                                                   pairwise_diff, cfg.stride)
                    visualize.show_arrows(cfg, img, pose, arrows)
                    visualize.waitforbuttonpress()
                    continue

                out_fn = os.path.join(out_dir, cache_name)
                dict = {
                    'scoremaps': scmap.astype('float32'),
                    'locreg_pred': locref.astype('float32'),
                    'pairwise_diff': pairwise_diff.astype('float32')
                }
                scipy.io.savemat(out_fn, mdict=dict)
                continue
        else:
            # cache_name = '1.mat'
            full_fn = os.path.join(cfg.cached_scoremaps, cache_name)
            mlab = scipy.io.loadmat(full_fn)
            scmap = mlab["scoremaps"]
            locref = mlab["locreg_pred"]
            pairwise_diff = mlab["pairwise_diff"]

        detections = extract_detections(cfg, scmap, locref, pairwise_diff)
        unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(
            sm, detections)
        person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array,
                                                     pos_array)

        if visualise:
            img = np.squeeze(batch[Batch.inputs]).astype('uint8')
            # visualize.show_heatmaps(cfg, img, scmap, pose)
            """
            # visualize part detections after NMS
            visim_dets = visualize_detections(cfg, img, detections)
            plt.imshow(visim_dets)
            plt.show()
            visualize.waitforbuttonpress()
            """

            #            """
            visim_multi = img.copy()
            draw_multi.draw(visim_multi, dataset, person_conf_multi)

            plt.imshow(visim_multi)
            plt.show()
            visualize.waitforbuttonpress()
        #            """

        if cfg.use_gt_segm:
            coco_img_results = pose_predict_with_gt_segm(
                scmap, locref, cfg.stride, batch[Batch.data_item].gt_segm,
                batch[Batch.data_item].coco_id)
            coco_results += coco_img_results
            if len(coco_img_results):
                dataset.visualize_coco(coco_img_results,
                                       batch[Batch.data_item].visibilities)

    if cfg.use_gt_segm:
        with open('predictions_with_segm.json', 'w') as outfile:
            json.dump(coco_results, outfile)

    sess.close()
Exemplo n.º 2
0
# Load and setup CNN part detector
sess, inputs, outputs = predict.setup_pose_prediction(cfg)

# Read image from file
file_name = "demo/image_multi.png"
image = imageio.imread(file_name, mode='RGB')

image_batch = data_to_input(image)

# Compute prediction with the CNN
outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
scmap, locref, pairwise_diff = predict.extract_cnn_output(
    outputs_np, cfg, dataset.pairwise_stats)

detections = extract_detections(cfg, scmap, locref, pairwise_diff)
unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(
    sm, detections)
person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array, pos_array)

img = np.copy(image)

visim_multi = img.copy()

fig = plt.imshow(visim_multi)
draw_multi.draw(visim_multi, dataset, person_conf_multi)
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)

plt.show()
visualize.waitforbuttonpress()
Exemplo n.º 3
0
            sm, detections)
        unLab2, pos_array2, unary_array2, pwidx_array2, pw_array2 = eval_graph(
            sm, detections2)

        person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array,
                                                     pos_array)
        person_conf_multi2 = get_person_conf_multicut(sm, unLab2, unary_array2,
                                                      pos_array2)

        img = np.copy(image)
        img2 = np.copy(image2)
        #coor = PersonDraw.draw()
        visim_multi = img.copy()
        visim_multi2 = img2.copy()

        co1 = draw_multi.draw(visim_multi, dataset, person_conf_multi)
        co2 = draw_multi.draw(visim_multi2, dataset, person_conf_multi2)

        cv2.imshow('frame', visim_multi2)

        cv2.imshow('frame', visim_multi)
        cv2.destroyAllWindows()
        #plt.show()
        visualize.waitforbuttonpress()
        #print("this is draw : ", co1)
        """
                qwr = np.zeros((1920,1080,3), np.uint8)

                cv2.line(qwr, co1[5][0], co1[5][1],(255,0,0),3)
                cv2.line(qwr, co1[7][0], co1[7][1],(255,0,0),3)
                cv2.line(qwr, co1[6][0], co1[6][1],(255,0,0),3)
draw_multi = PersonDraw()

# Load and setup CNN part detector
sess, inputs, outputs = predict.setup_pose_prediction(cfg)

# Read image from file
file_name = "demo/image_multi.png"
image = imread(file_name, mode='RGB')

image_batch = data_to_input(image)

# Compute prediction with the CNN
outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
scmap, locref, pairwise_diff = predict.extract_cnn_output(outputs_np, cfg, dataset.pairwise_stats)

detections = extract_detections(cfg, scmap, locref, pairwise_diff)
unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(sm, detections)
person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array, pos_array)

img = np.copy(image)

visim_multi = img.copy()

fig = plt.imshow(visim_multi)
draw_multi.draw(visim_multi, dataset, person_conf_multi)
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)

plt.show()
visualize.waitforbuttonpress()
Exemplo n.º 5
0
def main():
    start_time=time.time()
    print("main hai")
    tf.reset_default_graph()
    cfg = load_config("demo/pose_cfg_multi.yaml")
    dataset = create_dataset(cfg)
    sm = SpatialModel(cfg)
    sm.load()
    draw_multi = PersonDraw()
    # Load and setup CNN part detector
    sess, inputs, outputs = predict.setup_pose_prediction(cfg)

    # Read image from file
    dir=os.listdir("stick")
    k=0
    cap=cv2.VideoCapture(0)
    i=0
    while (cap.isOpened()):
            if i%20 == 0:                   
                ret, orig_frame= cap.read()
                if ret==True:
                    frame = cv2.resize(orig_frame, (0, 0), fx=0.30, fy=0.30)
                    image= frame
                    sse=0
                    mse=0
                    
                    image_batch = data_to_input(frame)

                    # Compute prediction with the CNN
                    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})

                    scmap, locref, pairwise_diff = predict.extract_cnn_output(outputs_np, cfg, dataset.pairwise_stats)

                    detections = extract_detections(cfg, scmap, locref, pairwise_diff)

                    unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(sm, detections)

                    person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array, pos_array)
                    img = np.copy(image)
                    #coor = PersonDraw.draw()
                    visim_multi = img.copy()
                    co1=draw_multi.draw(visim_multi, dataset, person_conf_multi)
                    plt.imshow(visim_multi)
                    plt.show()
                    visualize.waitforbuttonpress()
                    #print("this is draw : ", co1)
                    if k==1:
                        qwr = np.zeros((1920,1080,3), np.uint8)

                        cv2.line(qwr, co1[5][0], co1[5][1],(255,0,0),3)
                        cv2.line(qwr, co1[7][0], co1[7][1],(255,0,0),3)
                        cv2.line(qwr, co1[6][0], co1[6][1],(255,0,0),3)
                        cv2.line(qwr, co1[4][0], co1[4][1],(255,0,0),3)

                        cv2.line(qwr, co1[9][0], co1[9][1],(255,0,0),3)
                        cv2.line(qwr, co1[11][0], co1[11][1],(255,0,0),3)
                        cv2.line(qwr, co1[8][0], co1[8][1],(255,0,0),3)
                        cv2.line(qwr, co1[10][0], co1[10][1],(255,0,0),3)
                        # In[9]:
                        cv2.imshow('r',qwr)
                        qwr2="stick/frame"+str(k)+".jpg"
                        qw1 = cv2.cvtColor(qwr, cv2.COLOR_BGR2GRAY)
                        qw2= cv2.cvtColor(qwr2, cv2.COLOR_BGR2GRAY)

                        fig = plt.figure("Images")
                        images = ("Original", qw1), ("Contrast", qw2)
                        for (i, (name, image)) in enumerate(images):
                                ax = fig.add_subplot(1, 3, i + 1)
                                ax.set_title(name)
                        plt.imshow(hash(tuple(image)))
                        # compare the images
                        s,m=compare_images(qw1, qw2, "Image1 vs Image2")
                        k+=1
                        sse=s
                        mse=m

                else:
                    break
    elapsed= time.time()-start_time
    #print("sse score : ", sse)
    print("Mean squared error : ", elapsed/100)
    cap.release()
    cv2.destroyAllWindows()
def test_net(visualise, cache_scoremaps, development):
    logging.basicConfig(level=logging.INFO)

    cfg = load_config()
    dataset = create_dataset(cfg)
    dataset.set_shuffle(False)

    sm = SpatialModel(cfg)
    sm.load()

    draw_multi = PersonDraw()

    from_cache = "cached_scoremaps" in cfg
    if not from_cache:
        sess, inputs, outputs = setup_pose_prediction(cfg)

    if cache_scoremaps:
        out_dir = cfg.scoremap_dir
        if not os.path.exists(out_dir):
            os.makedirs(out_dir)

    pairwise_stats = dataset.pairwise_stats
    num_images = dataset.num_images if not development else min(10, dataset.num_images)
    coco_results = []

    for k in range(num_images):
        print('processing image {}/{}'.format(k, num_images-1))

        batch = dataset.next_batch()

        cache_name = "{}.mat".format(batch[Batch.data_item].coco_id)

        if not from_cache:
            outputs_np = sess.run(outputs, feed_dict={inputs: batch[Batch.inputs]})
            scmap, locref, pairwise_diff = extract_cnn_output(outputs_np, cfg, pairwise_stats)

            if cache_scoremaps:
                if visualise:
                    img = np.squeeze(batch[Batch.inputs]).astype('uint8')
                    pose = argmax_pose_predict(scmap, locref, cfg.stride)
                    arrows = argmax_arrows_predict(scmap, locref, pairwise_diff, cfg.stride)
                    visualize.show_arrows(cfg, img, pose, arrows)
                    visualize.waitforbuttonpress()
                    continue

                out_fn = os.path.join(out_dir, cache_name)
                dict = {'scoremaps': scmap.astype('float32'),
                        'locreg_pred': locref.astype('float32'),
                        'pairwise_diff': pairwise_diff.astype('float32')}
                scipy.io.savemat(out_fn, mdict=dict)
                continue
        else:
            #cache_name = '1.mat'
            full_fn = os.path.join(cfg.cached_scoremaps, cache_name)
            mlab = scipy.io.loadmat(full_fn)
            scmap = mlab["scoremaps"]
            locref = mlab["locreg_pred"]
            pairwise_diff = mlab["pairwise_diff"]

        detections = extract_detections(cfg, scmap, locref, pairwise_diff)
        unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(sm, detections)
        person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array, pos_array)

        if visualise:
            img = np.squeeze(batch[Batch.inputs]).astype('uint8')
            #visualize.show_heatmaps(cfg, img, scmap, pose)

            """
            # visualize part detections after NMS
            visim_dets = visualize_detections(cfg, img, detections)
            plt.imshow(visim_dets)
            plt.show()
            visualize.waitforbuttonpress()
            """

#            """
            visim_multi = img.copy()
            draw_multi.draw(visim_multi, dataset, person_conf_multi)

            plt.imshow(visim_multi)
            plt.show()
            visualize.waitforbuttonpress()
#            """


        if cfg.use_gt_segm:
            coco_img_results = pose_predict_with_gt_segm(scmap, locref, cfg.stride, batch[Batch.data_item].gt_segm,
                                                      batch[Batch.data_item].coco_id)
            coco_results += coco_img_results
            if len(coco_img_results):
                dataset.visualize_coco(coco_img_results, batch[Batch.data_item].visibilities)

    if cfg.use_gt_segm:
        with open('predictions_with_segm.json', 'w') as outfile:
            json.dump(coco_results, outfile)

    sess.close()