Exemplo n.º 1
0
def main(settings, rescue_running=[]):
    """
    Perform the primary loop of building, submitting, monitoring, and analyzing jobs.

    This function works via a loop of calls to thread.process and thread.interpret for each thread that hasn't
    terminated, until either the global termination criterion is met or all the individual threads have completed.

    Parameters
    ----------
    settings : argparse.Namespace
        Settings namespace object
    rescue_running : list
        List of threads passed in from handle_loop_exception, containing running threads. If given, setup is skipped and
        the function proceeds directly to the main loop.

    Returns
    -------
    exit_message : str
        A message indicating the status of ATESA at the end of main

    """

    if not rescue_running:
        # Implement resample
        if settings.job_type in ['aimless_shooting', 'committor_analysis'
                                 ] and settings.resample:
            # Store settings object in the working directory for compatibility with analysis/utility scripts
            if not settings.dont_dump:
                temp_settings = copy.deepcopy(
                    settings
                )  # initialize temporary copy of settings to modify
                temp_settings.__dict__.pop(
                    'env')  # env attribute is not picklable
                pickle.dump(temp_settings,
                            open(settings.working_directory + '/settings.pkl',
                                 'wb'),
                            protocol=2)
            # Run resampling
            if settings.job_type == 'aimless_shooting':
                utilities.resample(settings,
                                   partial=False,
                                   full_cvs=settings.full_cvs)
                if settings.information_error_checking:  # update info_err.out if called for by settings
                    information_error.main()
            elif settings.job_type == 'committor_analysis':
                resample_committor_analysis.resample_committor_analysis(
                    settings)
            return 'Resampling complete'

        # Make working directory if it does not exist, handling overwrite and restart as needed
        if os.path.exists(settings.working_directory):
            if settings.overwrite and not settings.restart:
                if os.path.exists(
                        settings.working_directory +
                        '/cvs.txt'):  # a kludge to avoid removing cvs.txt
                    if os.path.exists('ATESA_TEMP_CVS.txt'):
                        raise RuntimeError(
                            'tried to create temporary file ATESA_TEMP_CVS.txt in directory: '
                            + os.getcwd() +
                            ', but it already exists. Please move, delete, or rename it.'
                        )
                    shutil.move(settings.working_directory + '/cvs.txt',
                                'ATESA_TEMP_CVS.txt')
                shutil.rmtree(settings.working_directory)
                os.mkdir(settings.working_directory)
                if os.path.exists('ATESA_TEMP_CVS.txt'
                                  ):  # continuation of aforementioned kludge
                    shutil.move('ATESA_TEMP_CVS.txt',
                                settings.working_directory + '/cvs.txt')
            elif not settings.restart and glob.glob(
                    settings.working_directory +
                    '/*') == [settings.working_directory + '/cvs.txt']:
                # Occurs when restart = False, overwrite = False, and auto_cvs is used
                pass
            elif not settings.restart:
                raise RuntimeError(
                    'Working directory ' + settings.working_directory +
                    ' already exists, but overwrite '
                    '= False and restart = False. Either change one of these two settings or choose a '
                    'different working directory.')
        else:
            if not settings.restart:
                os.mkdir(settings.working_directory)
            else:
                raise RuntimeError('Working directory ' +
                                   settings.working_directory +
                                   ' does not yet exist, but '
                                   'restart = True.')

        # Store settings object in the working directory for compatibility with analysis/utility scripts
        if os.path.exists(
                settings.working_directory +
                '/settings.pkl'):  # for checking for need for resample later
            previous_settings = pickle.load(
                open(settings.working_directory + '/settings.pkl', 'rb'))
            settings.previous_cvs = previous_settings.cvs
            try:
                settings.previous_information_error_max_dims = previous_settings.information_error_max_dims
            except AttributeError:
                pass
            try:
                settings.previous_information_error_lmax_string = previous_settings.information_error_lmax_string
            except AttributeError:
                pass
        if not settings.dont_dump:
            temp_settings = copy.deepcopy(
                settings)  # initialize temporary copy of settings to modify
            temp_settings.__dict__.pop(
                'env'
            )  # env attribute is not picklable (update: maybe no longer true, but doesn't matter)
            pickle.dump(temp_settings,
                        open(settings.working_directory + '/settings.pkl',
                             'wb'),
                        protocol=2)

        # Build or load threads
        allthreads = init_threads(settings)

        # Move runtime to working directory
        os.chdir(settings.working_directory)

        running = allthreads.copy()  # to be pruned later by thread.process()
        attempted_rescue = False  # to keep track of general error handling below
    else:
        allthreads = pickle.load(
            open(settings.working_directory + '/restart.pkl', 'rb'))
        running = rescue_running
        attempted_rescue = True

    # Initialize threads with first process step
    try:
        if not rescue_running:  # if rescue_running, this step has already finished and we just want the while loop
            for thread in allthreads:
                running = thread.process(running, settings)
    except Exception as e:
        if settings.restart:
            print(
                'The following error occurred while attempting to initialize threads from restart.pkl. It may be '
                'corrupted.')
            #'If you haven\'t already done so, consider running verify_threads.py to remove corrupted threads from this file.'
        raise e

    try:
        if settings.job_type == 'aimless_shooting' and len(
                os.sched_getaffinity(0)) > 1:
            # Initialize Manager for shared data across processes; this is necessary because multiprocessing is being
            # retrofitted to code designed for serial processing, but it works!
            manager = Manager()

            # Setup Managed allthreads list
            managed_allthreads = []
            for thread in allthreads:
                thread_dict = thread.__dict__
                thread_history_dict = thread.history.__dict__
                managed_thread = Thread()
                managed_thread.history = manager.Namespace()
                managed_thread.__dict__.update(thread_dict)
                managed_thread.history.__dict__.update(thread_history_dict)
                managed_allthreads.append(managed_thread)
            allthreads = manager.list(managed_allthreads)

            # Setup Managed settings Namespace
            settings_dict = settings.__dict__
            managed_settings = manager.Namespace()
            # Need to explicitly update every key because of how the Managed Namespace works.
            # Calling exec is the best way to do this I could find. Updating managed_settings.__dict__ doesn't work.
            for key in settings_dict.keys():
                exec('managed_settings.' + key + ' = settings_dict[key]')

            # Distribute processes among available core Pool
            with get_context("spawn").Pool(len(os.sched_getaffinity(0))) as p:
                p.starmap(
                    main_loop,
                    zip(itertools.repeat(managed_settings),
                        itertools.repeat(allthreads),
                        [[thread] for thread in allthreads]))
        else:
            main_loop(settings, allthreads, running)
    except AttributeError:  # os.sched_getaffinity raises AttributeError on non-UNIX systems.
        main_loop(settings, allthreads, running)

    ## Deprecated thread pool
    # pool = ThreadPool(len(allthreads))
    # func = partial(main_loop, settings)
    # results = pool.map(func, [[thread] for thread in allthreads])

    jobtype = factory.jobtype_factory(settings.job_type)
    jobtype.cleanup(settings)

    return 'ATESA run exiting normally'
Exemplo n.º 2
0
    def __init__(self, inputShape, n_reservoir,
                 filterSize=1, stride=1, borderMode="mirror", nWorkers="auto",
                 spectralRadius=1.0, noiseLevel=0.0, inputScaling=None,
                 leakingRate=1.0, reservoirDensity=0.2, randomSeed=None, averageOutputWeights=True,
                 out_activation=lambda x: x, out_inverse_activation=lambda x: x,
                 weightGeneration='naive', bias=1.0, outputBias=1.0,
                 outputInputScaling=1.0, inputDensity=1.0, solver='pinv', regressionParameters={}, activation=B.tanh,
                 activationDerivation=lambda x: 1.0 / B.cosh(x) ** 2):

        self._averageOutputWeights = averageOutputWeights
        if averageOutputWeights and solver != "lsqr":
            raise ValueError(
                "`averageOutputWeights` can only be set to `True` when `solver` is set to `lsqr` (Ridge Regression)")

        self._borderMode = borderMode
        if not borderMode in ["mirror", "padding", "edge", "wrap"]:
            raise ValueError(
                "`borderMode` must be set to one of the following values: `mirror`, `padding`, `edge` or `wrap`.")

        self._regressionParameters = regressionParameters
        self._solver = solver

        n_inputDimensions = len(inputShape)

        if filterSize % 2 == 0:
            raise ValueError("filterSize has to be an odd number (1, 3, 5, ...).")
        self._filterSize = filterSize
        self._filterWidth = int(np.floor(filterSize / 2))
        self._stride = stride

        self._n_input = int(np.power(np.ceil(filterSize / stride), n_inputDimensions))

        self.n_inputDimensions = n_inputDimensions
        self.inputShape = inputShape

        if not self._averageOutputWeights:
            self._WOuts = B.empty((np.prod(inputShape), 1, self._n_input + n_reservoir + 1))
            self._WOut = None
        else:
            self._WOuts = None
            self._WOut = B.zeros((1, self._n_input + n_reservoir + 1))
        self._xs = B.empty((np.prod(inputShape), n_reservoir, 1))

        if nWorkers == "auto":
            self._nWorkers = np.max((cpu_count() - 1, 1))
        else:
            self._nWorkers = nWorkers

        manager = Manager()
        self.sharedNamespace = manager.Namespace()
        if hasattr(self, "fitWorkerID") == False or self.parallelWorkerIDs is None:
            self.parallelWorkerIDs = manager.Queue()
            for i in range(self._nWorkers):
                self.parallelWorkerIDs.put((i))

        super(SpatioTemporalESN, self).__init__(n_input=self._n_input, n_reservoir=n_reservoir, n_output=1,
                                                spectralRadius=spectralRadius,
                                                noiseLevel=noiseLevel, inputScaling=inputScaling,
                                                leakingRate=leakingRate, reservoirDensity=reservoirDensity,
                                                randomSeed=randomSeed, out_activation=out_activation,
                                                out_inverse_activation=out_inverse_activation,
                                                weightGeneration=weightGeneration, bias=bias, outputBias=outputBias,
                                                outputInputScaling=outputInputScaling,
                                                inputDensity=inputDensity, activation=activation,
                                                activationDerivation=activationDerivation)

        """
Exemplo n.º 3
0
    def __init__(
        self,
        inputShape,
        n_reservoir,
        filterSize=1,
        stride=1,
        borderMode="mirror",
        nWorkers="auto",
        spectralRadius=1.0,
        noiseLevel=0.0,
        inputScaling=None,
        leakingRate=1.0,
        reservoirDensity=0.2,
        randomSeed=None,
        averageOutputWeights=True,
        out_activation=lambda x: x,
        out_inverse_activation=lambda x: x,
        weightGeneration="naive",
        bias=1.0,
        outputBias=1.0,
        outputInputScaling=1.0,
        inputDensity=1.0,
        solver="pinv",
        regressionParameters={},
        activation=B.tanh,
        activationDerivative=lambda x: 1.0 / B.cosh(x)**2,
        chunkSize=16,
    ):
        """ ESN that predicts (steps of) a spatio-temporal time series based on a time series.

            Args:
                inputShape : Shape of the input w/o the time axis, e.g. (W, H) for a 2D input.
                n_reservoir : Number of units in the reservoir.
                filterSize : Size of patches used to predict a single output element.
                stride : Stride between different patches.
                borderMode : How to handle border values. Choices: mirror, padding, edge, wrap.
                nWorkers : Number of CPU threads executed in parallel to solve the problem.
                spectralRadius : Spectral radius of the reservoir's connection/weight matrix.
                noiseLevel : Magnitude of noise that is added to the input while fitting to prevent overfitting.
                inputScaling : Scaling factor of the input.
                leakingRate : Convex combination factor between 0 and 1 that weights current and new state value.
                reservoirDensity : Percentage of non-zero weight connections in the reservoir.
                randomSeed : Seed for random processes, e.g. weight initialization.
                averageOutputWeights : Average output matrices after fitting across all pixels or use a distinct matrix
                                        per pixel. The former assumes homogeneity of the problem across all pixels.
                out_activation : Final activation function (i.e. activation function of the output).
                out_inverse_activation : Inverse of the final activation function
                weightGeneration : Algorithm to generate weight matrices. Choices: naive, SORM, advanced, custom
                bias : Size of the bias added for the internal update process.
                outputBias : Size of the bias added for the final linear regression of the output.
                outputInputScaling : Rescaling factor for the input of the ESN for the regression.
                inputDensity : Percentage of non-zero weights in the input-to-reservoir weight matrix.
                solver : Algorithm to find output matrix. Choices: pinv, lsqr.
                regressionParameters : Arguments to the solving algorithm. For LSQR this controls the L2 regularization.
                activation : (Non-linear) Activation function.
                activationDerivative : Derivative of the activation function.
                chunkSize : Internal parameter for the multi-threading. For long time series this should be reduced to
                            avoid OOM errors/getting stuck and to reduce memory consumption.
        """

        self._averageOutputWeights = averageOutputWeights
        if averageOutputWeights and solver != "lsqr":
            raise ValueError(
                "`averageOutputWeights` can only be set to `True` when `solver` is set to `lsqr` (Ridge Regression)"
            )

        self._borderMode = borderMode
        if not borderMode in ["mirror", "padding", "edge", "wrap"]:
            raise ValueError(
                "`borderMode` must be set to one of the following values: `mirror`, `padding`, `edge` or `wrap`."
            )

        self._regressionParameters = regressionParameters
        self._solver = solver

        n_inputDimensions = len(inputShape)

        if filterSize % 2 == 0:
            raise ValueError(
                "filterSize has to be an odd number (1, 3, 5, ...).")
        self._filterSize = filterSize
        self._filterWidth = int(np.floor(filterSize / 2))
        self._stride = stride

        self._n_input = int(
            np.power(np.ceil(filterSize / stride), n_inputDimensions))

        self.n_inputDimensions = n_inputDimensions
        self.inputShape = inputShape

        if not self._averageOutputWeights:
            self._WOuts = B.empty(
                (np.prod(inputShape), 1, self._n_input + n_reservoir + 1))
            self._WOut = None
        else:
            self._WOuts = None
            self._WOut = B.zeros((1, self._n_input + n_reservoir + 1))
        self._xs = B.empty((np.prod(inputShape), n_reservoir, 1))

        if nWorkers == "auto":
            self._nWorkers = np.max((cpu_count() - 1, 1))
        else:
            self._nWorkers = nWorkers

        manager = Manager()
        self.sharedNamespace = manager.Namespace()
        if hasattr(self,
                   "fitWorkerID") == False or self.parallelWorkerIDs is None:
            self.parallelWorkerIDs = manager.Queue()
            for i in range(self._nWorkers):
                self.parallelWorkerIDs.put((i))

        self._chunkSize = chunkSize

        super(SpatioTemporalESN, self).__init__(
            n_input=self._n_input,
            n_reservoir=n_reservoir,
            n_output=1,
            spectralRadius=spectralRadius,
            noiseLevel=noiseLevel,
            inputScaling=inputScaling,
            leakingRate=leakingRate,
            reservoirDensity=reservoirDensity,
            randomSeed=randomSeed,
            out_activation=out_activation,
            out_inverse_activation=out_inverse_activation,
            weightGeneration=weightGeneration,
            bias=bias,
            outputBias=outputBias,
            outputInputScaling=outputInputScaling,
            inputDensity=inputDensity,
            activation=activation,
            activationDerivative=activationDerivative,
        )
        """