Exemplo n.º 1
0
def bulk_apply_mask(image_dir,
                    mask_dir,
                    output_dir,
                    output_suffix,
                    skip_existing_images=True):
    """Find corresponding images between dirs and apply the second as a mask
        
        Inputs:
        image_dir -- Directory of images to-be-masked
        mask_dir -- Directory of images that will be used as the mask
        output_dir -- Directory where the masked images will be saved
        ouptut_suffix -- Filename text after the core/sample name of the image file
        """

    (image_path_list,
     mask_path_list) = blk.find_shared_images(image_dir, mask_dir)

    for i in range(np.size(image_path_list)):

        masked_path = blk.create_new_image_path(image_path_list[i], output_dir,
                                                output_suffix)
        if masked_path.exists() and skip_existing_images:
            continue

        image = meta.setup_image(image_path_list[i])
        mask = meta.setup_image(mask_path_list[i]) > 0

        print('Masking ' + os.path.basename(image_path_list[i]) + ' with ' +
              os.path.basename(mask_path_list[i]))

        masked_image = sitk.Mask(image, mask)
        meta.copy_relevant_metadata(masked_image, image)

        meta.write_image(masked_image, masked_path)
Exemplo n.º 2
0
def resize_image(itk_image, current_spacing, target_spacing):
    """Resize an image by an integer factor towards target spacing"""

    if current_spacing < target_spacing:
        scale = math.floor(target_spacing / current_spacing)
        end_res = current_spacing * scale

        resized_image = sitk.Shrink(itk_image, [scale, scale])
        resized_image.SetSpacing([end_res, end_res])
        resized_image.SetOrigin(itk_image.GetOrigin())

    elif current_spacing > target_spacing:
        scale = math.floor(current_spacing / target_spacing)
        end_res = current_spacing / scale

        resized_image = sitk.Expand(itk_image, [scale, scale])
        resized_image.SetSpacing([end_res, end_res])
        resized_image.SetOrigin(itk_image.GetOrigin())

    else:
        resized_image = itk_image

    meta.copy_relevant_metadata(resized_image, itk_image)

    return resized_image
Exemplo n.º 3
0
def convert_intensity_to_retardance(itk_image,
                                    ret_ceiling=35, wavelength=549,
                                    nm_input=True, deg_output=True):
        """Convert retardance intensities that are scaled to the image input
        (e.g., 16 bit int) into to actual retardance values.
        
        :param itk_image: The image being converted, as an ITK _image object
        :param ret_ceiling:  The retardance value corresponding to max intensity
        :param wavelength:  The wavelength of light used to image, for converting between degrees and retardance.
        :param nm_input:  The input ret_ceiling is in nm if true, degrees if false
        :param deg_output:  The output is in degrees if true, nm if false
        :return A new ITK image with retardance values either in degrees or in nm
        """
        
        input_array = sitk.GetArrayFromImage(itk_image)
        
        # todo: implement a check for pixel type
        
        pixel_type_factor = ret_ceiling / 65535
        
        if nm_input and deg_output:
                wavelength_factor = 360 / wavelength
        elif nm_input is False and deg_output is False:
                wavelength_factor = wavelength / 360
        else:
                wavelength_factor = 1
        
        output_array = input_array * pixel_type_factor * wavelength_factor
        
        output_image = sitk.GetImageFromArray(output_array)
        output_image = sitk.Cast(output_image, sitk.sitkFloat32)
        meta.copy_relevant_metadata(output_image, itk_image)
        
        return output_image
Exemplo n.º 4
0
def apply_transform_fromfile(fixed_image: sitk.Image, moving_image: sitk.Image,
                             transform_path):
    transform = sitk.ReadTransform(str(transform_path))
    registered_image = sitk.Resample(moving_image, fixed_image, transform,
                                     sitk.sitkLinear, 0.0,
                                     moving_image.GetPixelID())

    meta.copy_relevant_metadata(registered_image, moving_image)

    return registered_image
Exemplo n.º 5
0
def supervised_register_images(fixed_image: sitk.Image,
                               moving_image: sitk.Image,
                               initial_transform: sitk.Transform = None,
                               moving_path=None,
                               registration_parameters: dict = None):
    """Register two images
    
        :param fixed_image: image that is being registered to
        :param moving_image: image that is being transformed and registered
        :param initial_transform: the type of registration/transform, e.g. affine or euler
        :param registration_parameters: dictionary of registration key/value arguments
        :return: Registered image, corresponding transform, metric, and stop
        """

    # todo: Re-enable registering for RGB images

    while True:
        registration_method = define_registration_method(
            registration_parameters)
        fixed_final, moving_final, region_extracted = query_for_changes(
            fixed_image, moving_image, initial_transform, registration_method,
            moving_path)

        reg_plot = RegistrationPlot(fixed_final,
                                    moving_final,
                                    transform=initial_transform)

        (transform, metric,
         stop) = register(fixed_final,
                          moving_final,
                          reg_plot,
                          registration_method=registration_method,
                          initial_transform=initial_transform)

        if region_extracted:
            itkplt.plot_overlay(fixed_image,
                                moving_image,
                                transform,
                                downsample=False)

        if query_good_registration(transform, metric, stop):
            break
        # todo: change registration method query here

    registered_image = sitk.Resample(moving_image, fixed_image, transform,
                                     sitk.sitkLinear, 0.0,
                                     moving_image.GetPixelID())

    meta.copy_relevant_metadata(registered_image, moving_image)
    plt.close('all')

    return registered_image, transform, metric, stop
Exemplo n.º 6
0
def extract_region(image: sitk.Image, size, origin, transform=None):
    """
        Extract a region from a SimpleITK image
        :param image: The SimpleITK image
        :param size: The size of the region in physical space
        :param origin: The origin of the region in physical space
        :param transform: Image transform to apply before extracting the region
        :return: A SimpleITK image that corresponds to the region
        """
    if transform is not None:
        translation = tran.get_translation(transform)
        origin = origin + translation

    size_array, index = get_region_size_origin_indices(size, origin,
                                                       image.GetSpacing())
    region = sitk.Extract(image, size_array, index)
    meta.copy_relevant_metadata(region, image)
    return region
Exemplo n.º 7
0
def bulk_threshold(input_dir,
                   output_dir,
                   output_suffix,
                   threshold=1,
                   skip_existing_images=False):
    """Apply intensity based thresholds to all images in folder"""
    path_list = util.list_filetype_in_dir(input_dir, '.tif')

    for i in range(len(path_list)):
        new_path = blk.create_new_image_path(path_list[i], output_dir,
                                             output_suffix)
        if new_path.exists() and skip_existing_images:
            continue

        original = meta.setup_image(path_list[i])
        new_image = apply_threshold(original,
                                    os.path.basename(path_list[i]),
                                    threshold=threshold)

        meta.copy_relevant_metadata(new_image, original)
        meta.write_image(new_image, new_path)
Exemplo n.º 8
0
def bulk_convert_to_eightbit(input_dir, output_dir, output_suffix):
    """Convert all tif images in a directory to 8bit and save in new directory
        
        Inputs:
        input_dir -- Directory of images to convert
        output_dir -- Directory to save converted images
        output_suffix -- Text in output image name after the core/sample name
        
        """

    path_list = util.list_filetype_in_dir(input_dir, '.tif')

    for i in range(len(path_list)):
        original = meta.setup_image(path_list[i])
        new_image = convert_to_eightbit(original,
                                        os.path.basename(path_list[i]))

        new_path = blk.create_new_image_path(path_list[i], output_dir,
                                             output_suffix)

        meta.copy_relevant_metadata(new_image, original)
        meta.write_image(new_image, new_path)