Exemplo n.º 1
0
def experiment(alg, params, n_epochs, fit_per_run, ep_per_run):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=1)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    policy = DeterministicPolicy(mu=approximator)

    mu = np.zeros(policy.weights_size)
    sigma = 1e-3 * np.eye(policy.weights_size)
    distribution = GaussianCholeskyDistribution(mu, sigma)

    # Agent
    agent = alg(mdp.info, distribution, policy, **params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_run)
    print('distribution parameters: ', distribution.get_parameters())
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    print('J at start : ' + str(np.mean(J)))

    for i in range(n_epochs):
        core.learn(n_episodes=fit_per_run * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset_eval = core.evaluate(n_episodes=ep_per_run)
        print('distribution parameters: ', distribution.get_parameters())
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        print('J at iteration ' + str(i) + ': ' + str(np.mean(J)))
Exemplo n.º 2
0
def test_V_lqr_gaussian_policy_gradient_K_diff_dims():

    A = np.array([[1., 0.4],
                  [0.2, 0.8]])

    B = np.array([[0.8],
                  [0.5]])

    Q = np.eye(2)

    R = np.eye(1)

    lqr = LQR(A, B, Q, R, max_pos=np.inf, max_action=np.inf,
              random_init=False, episodic=False, gamma=0.9, horizon=100,
              initial_state=None)

    K = np.array([[1.0, 0.1]])

    Sigma = np.array([[0.2]])

    s = np.array([1.0, 1.3])

    dJ = compute_lqr_V_gaussian_policy_gradient_K(s, lqr, K, Sigma)

    f = lambda theta: compute_lqr_V_gaussian_policy(s, lqr, theta.reshape(K.shape), Sigma)
    dJ_num = numerical_diff_function(f, K.reshape(-1))

    assert np.allclose(dJ, dJ_num)
Exemplo n.º 3
0
def test_lqr_solver_linear():
    lqr = LQR.generate(3)
    K = compute_lqr_feedback_gain(lqr)

    K_test = np.array([[0.89908343, 0., 0.],
                             [0., 0.24025307, 0.],
                             [0., 0., 0.24025307]])

    assert np.allclose(K, K_test)
def experiment(n_epochs, n_iterations, ep_per_run, save_states_to_disk):
    np.random.seed()

    logger = Logger('plot_and_norm_example', results_dir=None)
    logger.strong_line()
    logger.info('Plotting and normalization example')

    # MDP
    mdp = LQR.generate(dimensions=2, max_pos=10., max_action=5., episodic=True)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    optimizer = AdaptiveOptimizer(eps=.01)
    algorithm_params = dict(optimizer=optimizer)
    agent = REINFORCE(mdp.info, policy, **algorithm_params)

    # normalization callback
    prepro = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info, obs_normalized=True)

    # Train
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[prepro])

    # training loop
    for n in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset = core.evaluate(n_episodes=ep_per_run, render=False)
        J = np.mean(compute_J(dataset, mdp.info.gamma))
        logger.epoch_info(n + 1, J=J)

    if save_states_to_disk:
        # save normalization / plot states to disk path
        logger.info('Saving plotting and normalization data')
        os.makedirs("./logs/plot_and_norm", exist_ok=True)
        prepro.save("./logs/plot_and_norm/preprocessor.msh")
        plotter.save_state("./logs/plot_and_norm/plotting_state")

        # load states from disk path
        logger.info('Loading preprocessor and plotter')
        prerpo = MinMaxPreprocessor.load(
            "./logs/plot_and_norm/preprocessor.msh")
        plotter.load_state("./logs/plot_and_norm/plotting_state")
Exemplo n.º 5
0
def test_V_lqr():
    lqr = LQR.generate(3)

    K = np.array([[1.0, 0.1, 0.01],
                  [0.5, 1.2, 0.02],
                  [.02, 0.3, 0.9]])

    s = np.array([1.0, 1.3, -0.3])
    V_lqr = compute_lqr_V(s, lqr, K).item()

    assert np.allclose(V_lqr, -6.3336186348534875)
Exemplo n.º 6
0
def test_Q_lqr_gaussian_policy_10dim():
    lqr = LQR.generate(10)

    K = np.eye(10) * 0.1
    Sigma = np.eye(10) * 0.1

    s = np.ones(10)
    a = np.ones(10)
    #
    Q_lqg = compute_lqr_Q_gaussian_policy(s, a, lqr, K, Sigma).item()

    assert np.allclose(Q_lqg, -48.00590405904062)
Exemplo n.º 7
0
def test_Q_lqr():
    lqr = LQR.generate(3)

    K = np.array([[1.0, 0.1, 0.01],
                  [0.5, 1.2, 0.02],
                  [.02, 0.3, 0.9]])

    s = np.array([1.0, 1.3, -0.3])
    a = np.array([0.5, 0.2, 0.1])

    Q_lqr = compute_lqr_Q(s, a, lqr, K).item()

    assert np.allclose(Q_lqr, -10.83964921837036)
Exemplo n.º 8
0
def experiment(n_epochs, n_iterations, ep_per_run, save_states_to_disk):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=2, max_pos=10., max_action=5., episodic=True)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    learning_rate = AdaptiveParameter(value=.01)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = REINFORCE(mdp.info, policy, **algorithm_params)

    # normalization callback
    prepro = MinMaxPreprocessor(mdp_info=mdp.info)

    # plotting callback
    plotter = PlotDataset(mdp.info, obs_normalized=True)

    # Train
    core = Core(agent, mdp, callback_step=plotter, preprocessors=[prepro])

    # training loop
    for n in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset = core.evaluate(n_episodes=ep_per_run, render=False)
        print('Epoch: ', n, '  J: ', np.mean(compute_J(dataset,
                                                       mdp.info.gamma)))

    if save_states_to_disk:
        # save normalization / plot states to disk path
        os.makedirs("./temp/", exist_ok=True)
        prepro.save_state("./temp/normalization_state")
        plotter.save_state("./temp/plotting_state")

        # load states from disk path
        prepro.load_state("./temp/normalization_state")
        plotter.load_state("./temp/plotting_state")
Exemplo n.º 9
0
def test_V_lqr_gaussian_policy():
    lqr = LQR.generate(3)

    K = np.array([[1.0, 0.1, 0.01],
                  [0.5, 1.2, 0.02],
                  [.02, 0.3, 0.9]])

    Sigma = np.array([[0.18784063,  0.02205161, 0.19607835],
                      [0.02205161,  0.59897771,  0.09953863],
                      [0.19607835,  0.09953863,  0.23284475]])

    s = np.array([1.0, 1.3, -0.3])
    V_lqg = compute_lqr_V_gaussian_policy(s, lqr, K, Sigma)
    
    assert np.allclose(V_lqg, -28.39165320182624)
Exemplo n.º 10
0
def test_P():
    lqr = LQR.generate(3)
    K = np.array(
        [[1.0, 0.1, 0.01],
         [0.5, 1.2, 0.02],
         [.02, 0.3, 0.9]]
    )

    P = compute_lqr_P(lqr, K)

    P_test = np.array([[1.60755632, 0.78058807, 0.03219049],
                       [0.78058807, 1.67738666, 0.24905620],
                       [0.03219049, 0.2490562 , 0.83697781]])

    assert np.allclose(P, P_test)
Exemplo n.º 11
0
def test_Q_lqr_gaussian_policy():
    lqr = LQR.generate(3)

    K = np.array([[1.0, 0.1, 0.01],
                  [0.5, 1.2, 0.02],
                  [.02, 0.3, 0.9]])

    Sigma = np.array([[0.18784063,  0.02205161, 0.19607835],
                      [0.02205161,  0.59897771, 0.09953863],
                      [0.19607835, 0.09953863, 0.23284475]])

    s = np.array([1.0, 1.3, -0.3])
    a = np.array([-0.5, -0.2, 0.1])

    Q_lqg = compute_lqr_Q_gaussian_policy(s, a, lqr, K, Sigma).item()

    assert np.allclose(Q_lqg, -23.887098201718487)
Exemplo n.º 12
0
def experiment(alg, n_epochs, n_iterations, ep_per_run):
    np.random.seed()

    logger = Logger(alg.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + alg.__name__)

    # MDP
    mdp = LQR.generate(dimensions=2, max_action=1., max_pos=1.)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 0.25 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    optimizer = AdaptiveOptimizer(eps=1e-2)
    algorithm_params = dict(optimizer=optimizer)
    agent = alg(mdp.info, policy, **algorithm_params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_run)
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    logger.epoch_info(0,
                      J=np.mean(J),
                      policy_weights=policy.get_weights().tolist())

    for i in trange(n_epochs, leave=False):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset_eval = core.evaluate(n_episodes=ep_per_run)
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        logger.epoch_info(i + 1,
                          J=np.mean(J),
                          policy_weights=policy.get_weights().tolist())
Exemplo n.º 13
0
def test_V_lqr_gaussian_policy_gradient_K():
    lqr = LQR.generate(3)

    K = np.array([[1.0, 0.1, 0.01],
                  [0.5, 1.2, 0.02],
                  [.02, 0.3, 0.9]])

    Sigma = np.array([[0.18784063,  0.02205161, -0.19607835],
                      [0.02205161,  0.59897771,  0.09953863],
                      [-0.19607835,  0.09953863,  0.23284475]])

    s = np.array([1.0, 1.3, -0.3])

    dJ = compute_lqr_V_gaussian_policy_gradient_K(s, lqr, K, Sigma)

    f = lambda theta: compute_lqr_V_gaussian_policy(s, lqr, theta.reshape(K.shape), Sigma)
    dJ_num = numerical_diff_function(f, K.reshape(-1))

    assert np.allclose(dJ, dJ_num)
Exemplo n.º 14
0
def experiment(alg, params, n_epochs, fit_per_epoch, ep_per_fit):
    np.random.seed()

    logger = Logger(alg.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + alg.__name__)

    # MDP
    mdp = LQR.generate(dimensions=1)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    policy = DeterministicPolicy(mu=approximator)

    mu = np.zeros(policy.weights_size)
    sigma = 1e-3 * np.eye(policy.weights_size)
    distribution = GaussianCholeskyDistribution(mu, sigma)

    # Agent
    agent = alg(mdp.info, distribution, policy, **params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_fit)
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    logger.epoch_info(0,
                      J=np.mean(J),
                      distribution_parameters=distribution.get_parameters())

    for i in trange(n_epochs, leave=False):
        core.learn(n_episodes=fit_per_epoch * ep_per_fit,
                   n_episodes_per_fit=ep_per_fit)
        dataset_eval = core.evaluate(n_episodes=ep_per_fit)
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        logger.epoch_info(
            i + 1,
            J=np.mean(J),
            distribution_parameters=distribution.get_parameters())
Exemplo n.º 15
0
def experiment(alg, n_epochs, n_iterations, ep_per_run):
    np.random.seed()

    # MDP
    mdp = LQR.generate(dimensions=1)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    sigma = Regressor(LinearApproximator,
                      input_shape=mdp.info.observation_space.shape,
                      output_shape=mdp.info.action_space.shape)

    sigma_weights = 2 * np.ones(sigma.weights_size)
    sigma.set_weights(sigma_weights)

    policy = StateStdGaussianPolicy(approximator, sigma)

    # Agent
    learning_rate = AdaptiveParameter(value=.01)
    algorithm_params = dict(learning_rate=learning_rate)
    agent = alg(mdp.info, policy, **algorithm_params)

    # Train
    core = Core(agent, mdp)
    dataset_eval = core.evaluate(n_episodes=ep_per_run)
    print('policy parameters: ', policy.get_weights())
    J = compute_J(dataset_eval, gamma=mdp.info.gamma)
    print('J at start : ' + str(np.mean(J)))

    for i in range(n_epochs):
        core.learn(n_episodes=n_iterations * ep_per_run,
                   n_episodes_per_fit=ep_per_run)
        dataset_eval = core.evaluate(n_episodes=ep_per_run)
        print('policy parameters: ', policy.get_weights())
        J = compute_J(dataset_eval, gamma=mdp.info.gamma)
        print('J at iteration ' + str(i) + ': ' + str(np.mean(J)))
Exemplo n.º 16
0
def learn(alg, **alg_params):
    np.random.seed(1)
    torch.manual_seed(1)

    # MDP
    mdp = LQR.generate(dimensions=2)

    approximator = Regressor(LinearApproximator,
                             input_shape=mdp.info.observation_space.shape,
                             output_shape=mdp.info.action_space.shape)

    policy = DeterministicPolicy(mu=approximator)

    mu = np.zeros(policy.weights_size)
    sigma = 1e-3 * np.ones(policy.weights_size)
    distribution = GaussianDiagonalDistribution(mu, sigma)

    agent = alg(mdp.info, distribution, policy, **alg_params)
    core = Core(agent, mdp)

    core.learn(n_episodes=5, n_episodes_per_fit=5)

    return agent