Exemplo n.º 1
0
    def test_split_clf_on_chainpartitioner(self):
        # pretty much a smoke test for #156
        ds = datasets['uni2small']
        part = ChainNode([
            NFoldPartitioner(cvtype=1),
            Balancer(attr='targets',
                     count=2,
                     limit='partitions',
                     apply_selection=True)
        ])
        partitions = list(part.generate(ds))
        sclf = SplitClassifier(sample_clf_lin,
                               part,
                               enable_ca=['stats', 'splits'])
        sclf.train(ds)
        pred = sclf.predict(ds)
        assert_equal(len(pred), len(ds))  # rudimentary check
        assert_equal(len(sclf.ca.splits), len(partitions))
        assert_equal(len(sclf.clfs), len(partitions))

        # now let's do sensitivity analyzer just in case
        sclf.untrain()
        sensana = sclf.get_sensitivity_analyzer()
        sens = sensana(ds)
        # basic check that sensitivities varied across splits
        from mvpa2.mappers.fx import FxMapper
        sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens)
        assert_true(np.any(sens_stds != 0))
Exemplo n.º 2
0
def test_sifter_with_balancing():
    # extended previous test which was already
    # "... somewhat duplicating the doctest"
    ds = Dataset(samples=np.arange(12).reshape((-1, 2)),
                 sa={'chunks':   [ 0 ,  1 ,  2 ,  3 ,  4,   5 ],
                     'targets':  ['c', 'c', 'c', 'p', 'p', 'p']})

    # Without sifter -- just to assure that we do get all of them
    # i.e. 6*5*4*3/(4!) = 15
    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks')])
    assert_equal(len(list(par.generate(ds))), 15)

    # so we will take 4 chunks out of available 7, but would care only
    # about those partitions where we have balanced number of 'c' and 'p'
    # entries
    assert_raises(ValueError,
                  lambda x: list(Sifter([('targets', dict(wrong=1))]).generate(x)),
                  ds)

    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks'),
                     Sifter([('partitions', 2),
                             ('targets',
                              dict(uvalues=['c', 'p'],
                                   balanced=True))])
                     ])
    dss = list(par.generate(ds))
    # print [ x[x.sa.partitions==2].sa.targets for x in dss ]
    assert_equal(len(dss), 9)
    for ds_ in dss:
        testing = ds[ds_.sa.partitions == 2]
        assert_array_equal(np.unique(testing.sa.targets), ['c', 'p'])
        # and we still have both targets  present in training
        training = ds[ds_.sa.partitions == 1]
        assert_array_equal(np.unique(training.sa.targets), ['c', 'p'])
Exemplo n.º 3
0
def test_exclude_targets_combinations_subjectchunks():
    partitioner = ChainNode([NFoldPartitioner(attr='subjects'),
                             ExcludeTargetsCombinationsPartitioner(
                                 k=1,
                                 targets_attr='chunks',
                                 space='partitions')],
                            space='partitions')
    # targets do not need even to be defined!
    ds = Dataset(np.arange(18).reshape(9, 2),
                 sa={'chunks': np.arange(9) // 3,
                     'subjects': np.arange(9) % 3})
    dss = list(partitioner.generate(ds))
    assert_equal(len(dss), 9)

    testing_subjs, testing_chunks = [], []
    for ds_ in dss:
        testing_partition = ds_.sa.partitions == 2
        training_partition = ds_.sa.partitions == 1
        # must be scalars -- so implicit test here
        # if not -- would be error
        testing_subj = np.asscalar(np.unique(ds_.sa.subjects[testing_partition]))
        testing_subjs.append(testing_subj)
        testing_chunk = np.asscalar(np.unique(ds_.sa.chunks[testing_partition]))
        testing_chunks.append(testing_chunk)
        # and those must not appear for training
        ok_(not testing_subj in ds_.sa.subjects[training_partition])
        ok_(not testing_chunk in ds_.sa.chunks[training_partition])
    # and we should have gone through all chunks/subjs pairs
    testing_pairs = set(zip(testing_subjs, testing_chunks))
    assert_equal(len(testing_pairs), 9)
    # yoh: equivalent to set(itertools.product(range(3), range(3))))
    #      but .product is N/A for python2.5
    assert_equal(testing_pairs, set(zip(*np.where(np.ones((3,3))))))
Exemplo n.º 4
0
def _test_edmund_chong_20120907():  # pragma: no cover
    # commented out to avoid syntax warnings while compiling
    # from mvpa2.suite import *
    from mvpa2.testing.datasets import datasets
    repeater = Repeater(count=20)

    partitioner = ChainNode([NFoldPartitioner(cvtype=1),
                             Balancer(attr='targets',
                                      count=1, # for real data > 1
                                      limit='partitions',
                                      apply_selection=True
                                      )],
                            space='partitions')

    clf = LinearCSVMC() #choice of classifier
    permutator = AttributePermutator('targets', limit={'partitions': 1},
                                     count=1)
    null_cv = CrossValidation(
        clf,
        ChainNode([partitioner, permutator], space=partitioner.get_space()),
        errorfx=mean_mismatch_error)
    distr_est = MCNullDist(repeater, tail='left', measure=null_cv,
                           enable_ca=['dist_samples'])
    cvte = CrossValidation(clf, partitioner,
                           errorfx=mean_mismatch_error,
                           null_dist=distr_est,
                           enable_ca=['stats'])
    errors = cvte(datasets['uni2small'])
Exemplo n.º 5
0
def test_permute_superord():
    from mvpa2.base.node import ChainNode
    from mvpa2.generators.partition import NFoldPartitioner
    from mvpa2.generators.base import  Sifter
    from mvpa2.generators.permutation import AttributePermutator

    ds = _get_superord_dataset()
    # mvpa2.seed(1)
    part = ChainNode([
    ## so we split based on superord
        NFoldPartitioner(len(ds.sa['superord'].unique),
                         attr='subord'),
        ## so it should select only those splits where we took 1 from
        ## each of the superord categories leaving things in balance
        Sifter([('partitions', 2),
                ('superord',
                 { 'uvalues': ds.sa['superord'].unique,
                   'balanced': True})]),
        AttributePermutator(['superord'], limit=['partitions',
                                                 'chunks']),
    ], space='partitions')

    for ds_perm in part.generate(ds):
        # it does permutation
        assert(np.sum(ds_perm.sa.superord != ds.sa.superord) != 0)
Exemplo n.º 6
0
def test_permute_superord():
    from mvpa2.base.node import ChainNode
    from mvpa2.generators.partition import NFoldPartitioner
    from mvpa2.generators.base import Sifter
    from mvpa2.generators.permutation import AttributePermutator

    ds = _get_superord_dataset()
    # mvpa2.seed(1)
    part = ChainNode(
        [
            ## so we split based on superord
            NFoldPartitioner(len(ds.sa['superord'].unique), attr='subord'),
            ## so it should select only those splits where we took 1 from
            ## each of the superord categories leaving things in balance
            Sifter([('partitions', 2),
                    ('superord', {
                        'uvalues': ds.sa['superord'].unique,
                        'balanced': True
                    })]),
            AttributePermutator(['superord'], limit=['partitions', 'chunks']),
        ],
        space='partitions')

    for ds_perm in part.generate(ds):
        # it does permutation
        assert (np.sum(ds_perm.sa.superord != ds.sa.superord) != 0)
Exemplo n.º 7
0
def test_exclude_targets_combinations_subjectchunks():
    partitioner = ChainNode([NFoldPartitioner(attr='subjects'),
                             ExcludeTargetsCombinationsPartitioner(
                                 k=1,
                                 targets_attr='chunks',
                                 space='partitions')],
                            space='partitions')
    # targets do not need even to be defined!
    ds = Dataset(np.arange(18).reshape(9, 2),
                 sa={'chunks': np.arange(9) // 3,
                     'subjects': np.arange(9) % 3})
    dss = list(partitioner.generate(ds))
    assert_equal(len(dss), 9)

    testing_subjs, testing_chunks = [], []
    for ds_ in dss:
        testing_partition = ds_.sa.partitions == 2
        training_partition = ds_.sa.partitions == 1
        # must be scalars -- so implicit test here
        # if not -- would be error
        testing_subj = np.asscalar(np.unique(ds_.sa.subjects[testing_partition]))
        testing_subjs.append(testing_subj)
        testing_chunk = np.asscalar(np.unique(ds_.sa.chunks[testing_partition]))
        testing_chunks.append(testing_chunk)
        # and those must not appear for training
        ok_(not testing_subj in ds_.sa.subjects[training_partition])
        ok_(not testing_chunk in ds_.sa.chunks[training_partition])
    # and we should have gone through all chunks/subjs pairs
    testing_pairs = set(zip(testing_subjs, testing_chunks))
    assert_equal(len(testing_pairs), 9)
    # yoh: equivalent to set(itertools.product(range(3), range(3))))
    #      but .product is N/A for python2.5
    assert_equal(testing_pairs, set(zip(*np.where(np.ones((3,3))))))
Exemplo n.º 8
0
def test_exclude_targets_combinations():
    partitioner = ChainNode([
        NFoldPartitioner(),
        ExcludeTargetsCombinationsPartitioner(
            k=2, targets_attr='targets', space='partitions')
    ],
                            space='partitions')
    from mvpa2.misc.data_generators import normal_feature_dataset
    ds = normal_feature_dataset(snr=0.,
                                nlabels=4,
                                perlabel=3,
                                nchunks=3,
                                nonbogus_features=[0, 1, 2, 3],
                                nfeatures=4)
    partitions = list(partitioner.generate(ds))
    assert_equal(len(partitions), 3 * 6)
    splitter = Splitter('partitions')
    combs = []
    comb_chunks = []
    for p in partitions:
        trds, teds = list(splitter.generate(p))[:2]
        comb = tuple(np.unique(teds.targets))
        combs.append(comb)
        comb_chunks.append(comb + tuple(np.unique(teds.chunks)))
    assert_equal(len(set(combs)),
                 6)  # just 6 possible combinations of 2 out of 4
    assert_equal(len(set(comb_chunks)), 3 * 6)  # all unique
Exemplo n.º 9
0
def test_splitter():
    ds = give_data()
    # split with defaults
    spl1 = Splitter('chunks')
    assert_raises(NotImplementedError, spl1, ds)

    splits = list(spl1.generate(ds))
    assert_equal(len(splits), len(ds.sa['chunks'].unique))

    for split in splits:
        # it should have perform basic slicing!
        assert_true(split.samples.base is ds.samples)
        assert_equal(len(split.sa['chunks'].unique), 1)
        assert_true('lastsplit' in split.a)
    assert_true(splits[-1].a.lastsplit)

    # now again, more customized
    spl2 = Splitter('targets',
                    attr_values=[0, 1, 1, 2, 3, 3, 3],
                    count=4,
                    noslicing=True)
    splits = list(spl2.generate(ds))
    assert_equal(len(splits), 4)
    for split in splits:
        # it should NOT have perform basic slicing!
        assert_false(split.samples.base is ds.samples)
        assert_equal(len(split.sa['targets'].unique), 1)
        assert_equal(len(split.sa['chunks'].unique), 10)
    assert_true(splits[-1].a.lastsplit)

    # two should be identical
    assert_array_equal(splits[1].samples, splits[2].samples)

    # now go wild and split by feature attribute
    ds.fa['roi'] = np.repeat([0, 1], 5)
    # splitter should auto-detect that this is a feature attribute
    spl3 = Splitter('roi')
    splits = list(spl3.generate(ds))
    assert_equal(len(splits), 2)
    for split in splits:
        assert_true(split.samples.base is ds.samples)
        assert_equal(len(split.fa['roi'].unique), 1)
        assert_equal(split.shape, (100, 5))

    # and finally test chained splitters
    cspl = ChainNode([spl2, spl3, spl1])
    splits = list(cspl.generate(ds))
    # 4 target splits and 2 roi splits each and 10 chunks each
    assert_equal(len(splits), 80)
Exemplo n.º 10
0
    def test_noise_classification(self):
        # get a dataset with a very high SNR
        data = get_mv_pattern(10)

        # do crossval with default errorfx and 'mean' combiner
        cv = CrossValidation(sample_clf_nl, NFoldPartitioner())

        # must return a scalar value
        result = cv(data)
        # must be perfect
        self.assertTrue((result.samples < 0.05).all())

        # do crossval with permuted regressors
        cv = CrossValidation(
            sample_clf_nl,
            ChainNode(
                [NFoldPartitioner(),
                 AttributePermutator('targets', count=10)],
                space='partitions'))
        results = cv(data)

        # results must not be the same
        self.assertTrue(len(np.unique(results.samples)) > 1)

        # must be at chance level
        pmean = np.array(results).mean()
        self.assertTrue(pmean < 0.58 and pmean > 0.42)
Exemplo n.º 11
0
    def test_split_featurewise_dataset_measure(self):
        ds = datasets['uni3small']
        sana = RepeatedMeasure(
            SMLR(fit_all_weights=True).get_sensitivity_analyzer(),
            ChainNode(
                [NFoldPartitioner(),
                 Splitter('partitions', attr_values=[1])]))

        sens = sana(ds)
        # a sensitivity for each chunk and each label combination
        assert_equal(sens.shape, (len(ds.sa['chunks'].unique) *
                                  len(ds.sa['targets'].unique), ds.nfeatures))

        # Lets try more complex example with 'boosting'
        ds = datasets['uni3medium']
        ds.init_origids('samples')
        sana = RepeatedMeasure(
            SMLR(fit_all_weights=True).get_sensitivity_analyzer(),
            Balancer(amount=0.25, count=2, apply_selection=True),
            enable_ca=['datasets', 'repetition_results'])
        sens = sana(ds)

        assert_equal(sens.shape,
                     (2 * len(ds.sa['targets'].unique), ds.nfeatures))
        splits = sana.ca.datasets
        self.assertEqual(len(splits), 2)
        self.assertTrue(
            np.all([s.nsamples == ds.nsamples // 4 for s in splits]))
        # should have used different samples
        self.assertTrue(np.any([splits[0].sa.origids != splits[1].sa.origids]))
        # and should have got different sensitivities
        self.assertTrue(np.any(sens[0] != sens[3]))
Exemplo n.º 12
0
def test_splitter():
    ds = give_data()
    # split with defaults
    spl1 = Splitter('chunks')
    assert_raises(NotImplementedError, spl1, ds)

    splits = list(spl1.generate(ds))
    assert_equal(len(splits), len(ds.sa['chunks'].unique))

    for split in splits:
        # it should have perform basic slicing!
        assert_true(split.samples.base is ds.samples)
        assert_equal(len(split.sa['chunks'].unique), 1)
        assert_true('lastsplit' in split.a)
    assert_true(splits[-1].a.lastsplit)

    # now again, more customized
    spl2 = Splitter('targets', attr_values = [0,1,1,2,3,3,3], count=4,
                   noslicing=True)
    splits = list(spl2.generate(ds))
    assert_equal(len(splits), 4)
    for split in splits:
        # it should NOT have perform basic slicing!
        assert_false(split.samples.base is ds.samples)
        assert_equal(len(split.sa['targets'].unique), 1)
        assert_equal(len(split.sa['chunks'].unique), 10)
    assert_true(splits[-1].a.lastsplit)

    # two should be identical
    assert_array_equal(splits[1].samples, splits[2].samples)

    # now go wild and split by feature attribute
    ds.fa['roi'] = np.repeat([0,1], 5)
    # splitter should auto-detect that this is a feature attribute
    spl3 = Splitter('roi')
    splits = list(spl3.generate(ds))
    assert_equal(len(splits), 2)
    for split in splits:
        assert_true(split.samples.base is ds.samples)
        assert_equal(len(split.fa['roi'].unique), 1)
        assert_equal(split.shape, (100, 5))

    # and finally test chained splitters
    cspl = ChainNode([spl2, spl3, spl1])
    splits = list(cspl.generate(ds))
    # 4 target splits and 2 roi splits each and 10 chunks each
    assert_equal(len(splits), 80)
Exemplo n.º 13
0
def test_sifter():
    # somewhat duplicating the doctest
    ds = Dataset(samples=np.arange(8).reshape((4,2)),
                 sa={'chunks':   [ 0 ,  1 ,  2 ,  3 ],
                     'targets':  ['c', 'c', 'p', 'p']})
    par = ChainNode([NFoldPartitioner(cvtype=2, attr='chunks'),
                     Sifter([('partitions', 2),
                             ('targets', ['c', 'p'])])
                     ])
    dss = list(par.generate(ds))
    assert_equal(len(dss), 4)
    for ds_ in dss:
        testing = ds[ds_.sa.partitions == 2]
        assert_array_equal(np.unique(testing.sa.targets), ['c', 'p'])
        # and we still have both targets  present in training
        training = ds[ds_.sa.partitions == 1]
        assert_array_equal(np.unique(training.sa.targets), ['c', 'p'])
Exemplo n.º 14
0
def test_sifter():
    # somewhat duplicating the doctest
    ds = Dataset(samples=np.arange(8).reshape((4, 2)), sa={"chunks": [0, 1, 2, 3], "targets": ["c", "c", "p", "p"]})
    for sift_targets_definition in (["c", "p"], dict(uvalues=["c", "p"])):
        par = ChainNode(
            [
                NFoldPartitioner(cvtype=2, attr="chunks"),
                Sifter([("partitions", 2), ("targets", sift_targets_definition)]),
            ]
        )
        dss = list(par.generate(ds))
        assert_equal(len(dss), 4)
        for ds_ in dss:
            testing = ds[ds_.sa.partitions == 2]
            assert_array_equal(np.unique(testing.sa.targets), ["c", "p"])
            # and we still have both targets  present in training
            training = ds[ds_.sa.partitions == 1]
            assert_array_equal(np.unique(training.sa.targets), ["c", "p"])
Exemplo n.º 15
0
    def test_discarded_boundaries(self):
        ds = datasets["hollow"]
        # four runs
        ds.sa["chunks"] = np.repeat(np.arange(4), 10)
        # do odd even splitting for lots of boundaries in few splits
        part = ChainNode([OddEvenPartitioner(), StripBoundariesSamples("chunks", 1, 2)])

        parts = [d.samples.sid for d in part.generate(ds)]

        # both dataset should have the same samples, because the boundaries are
        # identical and the same sample should be stripped
        assert_array_equal(parts[0], parts[1])

        # we strip 3 samples per boundary
        assert_equal(len(parts[0]), len(ds) - (3 * 3))

        for i in [9, 10, 11, 19, 20, 21, 29, 30, 31]:
            assert_false(i in parts[0])
Exemplo n.º 16
0
def test_sifter_superord_usecase():
    from mvpa2.misc.data_generators import normal_feature_dataset
    from mvpa2.clfs.svm import LinearCSVMC  # fast one to use for tests
    from mvpa2.measures.base import CrossValidation

    from mvpa2.base.node import ChainNode
    from mvpa2.generators.partition import NFoldPartitioner
    from mvpa2.generators.base import Sifter

    # Let's simulate the beast -- 6 categories total groupped into 3
    # super-ordinate, and actually without any 'superordinate' effect
    # since subordinate categories independent
    ds = normal_feature_dataset(
        nlabels=6,
        snr=100,  # pure signal! ;)
        perlabel=30,
        nfeatures=6,
        nonbogus_features=range(6),
        nchunks=5)
    ds.sa['subord'] = ds.sa.targets.copy()
    ds.sa['superord'] = ['super%d' % (int(i[1]) % 3, )
                         for i in ds.targets]  # 3 superord categories
    # let's override original targets just to be sure that we aren't relying on them
    ds.targets[:] = 0

    npart = ChainNode(
        [
            ## so we split based on superord
            NFoldPartitioner(len(ds.sa['superord'].unique), attr='subord'),
            ## so it should select only those splits where we took 1 from
            ## each of the superord categories leaving things in balance
            Sifter([('partitions', 2),
                    ('superord', {
                        'uvalues': ds.sa['superord'].unique,
                        'balanced': True
                    })]),
        ],
        space='partitions')

    # and then do your normal where clf is space='superord'
    clf = LinearCSVMC(space='superord')
    cvte_regular = CrossValidation(clf,
                                   NFoldPartitioner(),
                                   errorfx=lambda p, t: np.mean(p == t))
    cvte_super = CrossValidation(clf,
                                 npart,
                                 errorfx=lambda p, t: np.mean(p == t))

    accs_regular = cvte_regular(ds)
    accs_super = cvte_super(ds)

    # With sifting we should get only 2^3 = 8 splits
    assert (len(accs_super) == 8)
    # I don't think that this would ever fail, so not marking it labile
    assert (np.mean(accs_regular) > .8)
    assert (np.mean(accs_super) < .6)
Exemplo n.º 17
0
    def test_discarded_boundaries(self):
        ds = datasets['hollow']
        # four runs
        ds.sa['chunks'] = np.repeat(np.arange(4), 10)
        # do odd even splitting for lots of boundaries in few splits
        part = ChainNode([OddEvenPartitioner(),
                          StripBoundariesSamples('chunks', 1, 2)])

        parts = [d.samples.sid for d in part.generate(ds)]

        # both dataset should have the same samples, because the boundaries are
        # identical and the same sample should be stripped
        assert_array_equal(parts[0], parts[1])

        # we strip 3 samples per boundary
        assert_equal(len(parts[0]), len(ds) - (3 * 3))

        for i in [9, 10, 11, 19, 20, 21, 29, 30, 31]:
            assert_false(i in parts[0])
Exemplo n.º 18
0
def test_sifter():
    # somewhat duplicating the doctest
    ds = Dataset(samples=np.arange(8).reshape((4,2)),
                 sa={'chunks':   [ 0 ,  1 ,  2 ,  3 ],
                     'targets':  ['c', 'c', 'p', 'p']})
    for sift_targets_definition in (['c', 'p'],
                                    dict(uvalues=['c', 'p'])):
        par = ChainNode([NFoldPartitioner(cvtype=2, attr='chunks'),
                         Sifter([('partitions', 2),
                                 ('targets', sift_targets_definition)])
                         ])
        dss = list(par.generate(ds))
        assert_equal(len(dss), 4)
        for ds_ in dss:
            testing = ds[ds_.sa.partitions == 2]
            assert_array_equal(np.unique(testing.sa.targets), ['c', 'p'])
            # and we still have both targets  present in training
            training = ds[ds_.sa.partitions == 1]
            assert_array_equal(np.unique(training.sa.targets), ['c', 'p'])
Exemplo n.º 19
0
def test_exclude_targets_combinations():
    partitioner = ChainNode(
        [NFoldPartitioner(), ExcludeTargetsCombinationsPartitioner(k=2, targets_attr="targets", space="partitions")],
        space="partitions",
    )
    from mvpa2.misc.data_generators import normal_feature_dataset

    ds = normal_feature_dataset(snr=0.0, nlabels=4, perlabel=3, nchunks=3, nonbogus_features=[0, 1, 2, 3], nfeatures=4)
    partitions = list(partitioner.generate(ds))
    assert_equal(len(partitions), 3 * 6)
    splitter = Splitter("partitions")
    combs = []
    comb_chunks = []
    for p in partitions:
        trds, teds = list(splitter.generate(p))[:2]
        comb = tuple(np.unique(teds.targets))
        combs.append(comb)
        comb_chunks.append(comb + tuple(np.unique(teds.chunks)))
    assert_equal(len(set(combs)), 6)  # just 6 possible combinations of 2 out of 4
    assert_equal(len(set(comb_chunks)), 3 * 6)  # all unique
Exemplo n.º 20
0
def test_sifter_with_balancing():
    # extended previous test which was already
    # "... somewhat duplicating the doctest"
    ds = Dataset(samples=np.arange(12).reshape((-1, 2)),
                 sa={
                     'chunks': [0, 1, 2, 3, 4, 5],
                     'targets': ['c', 'c', 'c', 'p', 'p', 'p']
                 })

    # Without sifter -- just to assure that we do get all of them
    # i.e. 6*5*4*3/(4!) = 15
    par = ChainNode([NFoldPartitioner(cvtype=4, attr='chunks')])
    assert_equal(len(list(par.generate(ds))), 15)

    # so we will take 4 chunks out of available 7, but would care only
    # about those partitions where we have balanced number of 'c' and 'p'
    # entries
    assert_raises(
        ValueError,
        lambda x: list(Sifter([('targets', dict(wrong=1))]).generate(x)), ds)

    par = ChainNode([
        NFoldPartitioner(cvtype=4, attr='chunks'),
        Sifter([('partitions', 2),
                ('targets', dict(uvalues=['c', 'p'], balanced=True))])
    ])
    dss = list(par.generate(ds))
    # print [ x[x.sa.partitions==2].sa.targets for x in dss ]
    assert_equal(len(dss), 9)
    for ds_ in dss:
        testing = ds[ds_.sa.partitions == 2]
        assert_array_equal(np.unique(testing.sa.targets), ['c', 'p'])
        # and we still have both targets  present in training
        training = ds[ds_.sa.partitions == 1]
        assert_array_equal(np.unique(training.sa.targets), ['c', 'p'])
Exemplo n.º 21
0
    def test_split_clf_on_chainpartitioner(self):
        # pretty much a smoke test for #156
        ds = datasets['uni2small']
        part = ChainNode([NFoldPartitioner(cvtype=1),
                          Balancer(attr='targets', count=2,
                                   limit='partitions', apply_selection=True)])
        partitions = list(part.generate(ds))
        sclf = SplitClassifier(sample_clf_lin, part, enable_ca=['stats', 'splits'])
        sclf.train(ds)
        pred = sclf.predict(ds)
        assert_equal(len(pred), len(ds))  # rudimentary check
        assert_equal(len(sclf.ca.splits), len(partitions))
        assert_equal(len(sclf.clfs), len(partitions))

        # now let's do sensitivity analyzer just in case
        sclf.untrain()
        sensana = sclf.get_sensitivity_analyzer()
        sens = sensana(ds)
        # basic check that sensitivities varied across splits
        from mvpa2.mappers.fx import FxMapper
        sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens)
        assert_true(np.any(sens_stds != 0))
Exemplo n.º 22
0
def test_sifter_superord_usecase():
    from mvpa2.misc.data_generators import normal_feature_dataset
    from mvpa2.clfs.svm import LinearCSVMC  # fast one to use for tests
    from mvpa2.measures.base import CrossValidation

    from mvpa2.base.node import ChainNode
    from mvpa2.generators.partition import NFoldPartitioner
    from mvpa2.generators.base import Sifter

    ds = _get_superord_dataset()

    npart = ChainNode(
        [
            ## so we split based on superord
            NFoldPartitioner(len(ds.sa['superord'].unique), attr='subord'),
            ## so it should select only those splits where we took 1 from
            ## each of the superord categories leaving things in balance
            Sifter([('partitions', 2),
                    ('superord', {
                        'uvalues': ds.sa['superord'].unique,
                        'balanced': True
                    })]),
        ],
        space='partitions')

    # and then do your normal where clf is space='superord'
    clf = LinearCSVMC(space='superord')
    cvte_regular = CrossValidation(clf,
                                   NFoldPartitioner(),
                                   errorfx=lambda p, t: np.mean(p == t))
    cvte_super = CrossValidation(clf,
                                 npart,
                                 errorfx=lambda p, t: np.mean(p == t))

    accs_regular = cvte_regular(ds)
    accs_super = cvte_super(ds)

    # With sifting we should get only 2^3 = 8 splits
    assert (len(accs_super) == 8)
    # I don't think that this would ever fail, so not marking it labile
    assert (np.mean(accs_regular) > .8)
    assert (np.mean(accs_super) < .6)
Exemplo n.º 23
0
    def test_compound_node(self):
        data = np.asarray([[1, 2, 3, 4]], dtype=np.float_).T
        ds = AttrDataset(data, sa=dict(targets=[0, 0, 1, 1]))

        add = lambda x: lambda y: x + y
        mul = lambda x: lambda y: x * y

        add2 = FxNode(add(2))
        mul3 = FxNode(mul(3))

        assert_array_equal(add2(ds).samples, data + 2)

        add2mul3 = ChainNode([add2, mul3])
        assert_array_equal(add2mul3(ds), (data + 2) * 3)

        add2_mul3v = CombinedNode([add2, mul3], 'v')
        add2_mul3h = CombinedNode([add2, mul3], 'h')
        assert_array_equal(
            add2_mul3v(ds).samples, np.vstack((data + 2, data * 3)))
        assert_array_equal(
            add2_mul3h(ds).samples, np.hstack((data + 2, data * 3)))
Exemplo n.º 24
0
def test_confusion_as_node():
    from mvpa2.misc.data_generators import normal_feature_dataset
    from mvpa2.clfs.gnb import GNB
    from mvpa2.clfs.transerror import Confusion
    ds = normal_feature_dataset(snr=2.0,
                                perlabel=42,
                                nchunks=3,
                                nonbogus_features=[0, 1],
                                nfeatures=2)
    clf = GNB()
    cv = CrossValidation(clf,
                         NFoldPartitioner(),
                         errorfx=None,
                         postproc=Confusion(labels=ds.UT),
                         enable_ca=['stats'])
    res = cv(ds)
    # needs to be identical to CA
    assert_array_equal(res.samples, cv.ca.stats.matrix)
    assert_array_equal(res.sa.predictions, ds.UT)
    assert_array_equal(res.fa.targets, ds.UT)

    skip_if_no_external('scipy')

    from mvpa2.clfs.transerror import BayesConfusionHypothesis
    from mvpa2.base.node import ChainNode
    # same again, but this time with Bayesian hypothesis testing at the end
    cv = CrossValidation(clf,
                         NFoldPartitioner(),
                         errorfx=None,
                         postproc=ChainNode((Confusion(labels=ds.UT),
                                             BayesConfusionHypothesis())))
    res = cv(ds)
    # only two possible hypothesis with two classes
    assert_equals(len(res), 2)
    # the first hypothesis is the can't discriminate anything
    assert_equal(len(res.sa.hypothesis[0]), 1)
    assert_equal(len(res.sa.hypothesis[0][0]), 2)
    # and the hypothesis is actually less likely than the other one
    # (both classes can be distinguished)
    assert (np.e**res.samples[0, 0] < np.e**res.samples[1, 0])
Exemplo n.º 25
0
def get_crossvalidation_instance(learner, partitioner, errorfx,
                                 sampling_repetitions=1,
                                 learner_space='targets',
                                 balance_training=None,
                                 permutations=0,
                                 avg_datafold_results=True,
                                 prob_tail='left'):
    from mvpa2.base.node import ChainNode
    from mvpa2.measures.base import CrossValidation
    if not balance_training is None:
        # balance training data
        try:
            amount = int(balance_training)
        except ValueError:
            try:
                amount = float(balance_training)
            except ValueError:
                amount = balance_training
        from mvpa2.generators.resampling import Balancer
        balancer = Balancer(amount=amount, attr=learner_space,
                            count=sampling_repetitions,
                            limit={partitioner.get_space(): 1},
                            apply_selection=True,
                            include_offlimit=True)
    else:
        balancer = None
    # set learner space
    learner.set_space(learner_space)
    # setup generator for data folding -- put in a chain node for easy
    # amending
    gennode = ChainNode([partitioner], space=partitioner.get_space())
    if avg_datafold_results:
        from mvpa2.mappers.fx import mean_sample
        postproc = mean_sample()
    else:
        postproc = None
    if not balancer is None:
        # enable balancing step for each partitioning step
        gennode.append(balancer)
    if permutations > 0:
        from mvpa2.generators.base import Repeater
        from mvpa2.generators.permutation import AttributePermutator
        from mvpa2.clfs.stats import MCNullDist
        # how often do we want to shuffle the data
        repeater = Repeater(count=permutations)
        # permute the training part of a dataset exactly ONCE
        permutator = AttributePermutator(
                        learner_space,
                        limit={partitioner.get_space(): 1},
                        count=1)
        # CV with null-distribution estimation that permutes the training data for
        # each fold independently
        perm_gen_node = copy.deepcopy(gennode)
        perm_gen_node.append(permutator)
        null_cv = CrossValidation(learner,
                                  perm_gen_node,
                                  postproc=postproc,
                                  errorfx=errorfx)
        # Monte Carlo distribution estimator
        distr_est = MCNullDist(repeater,
                               tail=prob_tail,
                               measure=null_cv,
                               enable_ca=['dist_samples'])
        # pass the p-values as feature attributes on to the results
        pass_attr = [('ca.null_prob', 'fa', 1)]
    else:
        distr_est = None
        pass_attr = None
    # final CV node
    cv = CrossValidation(learner,
                         gennode,
                         errorfx=errorfx,
                         null_dist=distr_est,
                         postproc=postproc,
                         enable_ca=['stats', 'null_prob'],
                         pass_attr=pass_attr)
    return cv
Exemplo n.º 26
0
def group_sample_loser_measure(attrs=('targets', )):
    '''takes loser after meaning over attrs'''
    return ChainNode((mean_group_sample(attrs), sample_loser_measure()))
Exemplo n.º 27
0
def plot_feature_hist(dataset,
                      xlim=None,
                      noticks=True,
                      targets_attr='targets',
                      chunks_attr=None,
                      **kwargs):
    """Plot histograms of feature values for each labels.

    Parameters
    ----------
    dataset : Dataset
    xlim : None or 2-tuple
      Common x-axis limits for all histograms.
    noticks : bool
      If True, no axis ticks will be plotted. This is useful to save
      space in large plots.
    targets_attr : string, optional
      Name of samples attribute to be used as targets
    chunks_attr : None or string
      If a string, a histogram will be plotted per each target and each
      chunk (as defined in sa named `chunks_attr`), resulting is a
      histogram grid (targets x chunks).
    **kwargs
      Any additional arguments are passed to matplotlib's hist().
    """
    lsplit = ChainNode([
        NFoldPartitioner(1, attr=targets_attr),
        Splitter('partitions', attr_values=[2])
    ])
    csplit = ChainNode([
        NFoldPartitioner(1, attr=chunks_attr),
        Splitter('partitions', attr_values=[2])
    ])

    nrows = len(dataset.sa[targets_attr].unique)
    ncols = len(dataset.sa[chunks_attr].unique)

    def doplot(data):
        """Just a little helper which plots the histogram and removes
        ticks etc"""

        pl.hist(data, **kwargs)

        if xlim is not None:
            pl.xlim(xlim)

        if noticks:
            pl.yticks([])
            pl.xticks([])

    fig = 1

    # for all labels
    for row, ds in enumerate(lsplit.generate(dataset)):
        if chunks_attr:
            for col, d in enumerate(csplit.generate(ds)):

                pl.subplot(nrows, ncols, fig)
                doplot(d.samples.ravel())

                if row == 0:
                    pl.title('C:' + str(d.sa[chunks_attr].unique[0]))
                if col == 0:
                    pl.ylabel('L:' + str(d.sa[targets_attr].unique[0]))

                fig += 1
        else:
            pl.subplot(1, nrows, fig)
            doplot(ds.samples)

            pl.title('L:' + str(ds.sa[targets_attr].unique[0]))

            fig += 1
Exemplo n.º 28
0
def test_gnbsearchlight_permutations():
    import mvpa2
    from mvpa2.base.node import ChainNode
    from mvpa2.clfs.gnb import GNB
    from mvpa2.generators.base import  Repeater
    from mvpa2.generators.partition import NFoldPartitioner, OddEvenPartitioner
    #import mvpa2.generators.permutation
    #reload(mvpa2.generators.permutation)
    from mvpa2.generators.permutation import AttributePermutator
    from mvpa2.testing.datasets import datasets
    from mvpa2.measures.base import CrossValidation
    from mvpa2.measures.gnbsearchlight import sphere_gnbsearchlight
    from mvpa2.measures.searchlight import sphere_searchlight
    from mvpa2.mappers.fx import mean_sample
    from mvpa2.misc.errorfx import mean_mismatch_error
    from mvpa2.clfs.stats import MCNullDist
    from mvpa2.testing.tools import assert_raises, ok_, assert_array_less

    # mvpa2.debug.active = ['APERM', 'SLC'] #, 'REPM']
    # mvpa2.debug.metrics += ['pid']
    count = 10
    nproc = 1 + int(mvpa2.externals.exists('pprocess'))
    ds = datasets['3dsmall'].copy()
    ds.fa['voxel_indices'] = ds.fa.myspace

    slkwargs = dict(radius=3, space='voxel_indices',  enable_ca=['roi_sizes'],
                    center_ids=[1, 10, 70, 100])

    mvpa2.seed(mvpa2._random_seed)
    clf  = GNB()
    splt = NFoldPartitioner(cvtype=2, attr='chunks')

    repeater   = Repeater(count=count)
    permutator = AttributePermutator('targets', limit={'partitions': 1}, count=1)

    null_sl = sphere_gnbsearchlight(clf, ChainNode([splt, permutator], space=splt.get_space()),
                                    postproc=mean_sample(), errorfx=mean_mismatch_error,
                                    **slkwargs)

    distr_est = MCNullDist(repeater, tail='left', measure=null_sl,
                           enable_ca=['dist_samples'])
    sl = sphere_gnbsearchlight(clf, splt,
                               reuse_neighbors=True,
                               null_dist=distr_est, postproc=mean_sample(),
                               errorfx=mean_mismatch_error,
                               **slkwargs)
    if __debug__:                         # assert is done only without -O mode
        assert_raises(NotImplementedError, sl, ds)

    # "ad-hoc searchlights can't handle yet varying targets across partitions"
    if False:
        # after above limitation is removed -- enable
        sl_map = sl(ds)
        sl_null_prob = sl.ca.null_prob.samples.copy()

    mvpa2.seed(mvpa2._random_seed)
    ### 'normal' Searchlight
    clf  = GNB()
    splt = NFoldPartitioner(cvtype=2, attr='chunks')
    repeater   = Repeater(count=count)
    permutator = AttributePermutator('targets', limit={'partitions': 1}, count=1)
    # rng=np.random.RandomState(0)) # to trigger failure since the same np.random state
    # would be reused across all pprocesses
    null_cv = CrossValidation(clf, ChainNode([splt, permutator], space=splt.get_space()),
                              postproc=mean_sample())
    null_sl_normal = sphere_searchlight(null_cv, nproc=nproc, **slkwargs)
    distr_est_normal = MCNullDist(repeater, tail='left', measure=null_sl_normal,
                           enable_ca=['dist_samples'])

    cv = CrossValidation(clf, splt, errorfx=mean_mismatch_error,
                         enable_ca=['stats'], postproc=mean_sample() )
    sl = sphere_searchlight(cv, nproc=nproc, null_dist=distr_est_normal, **slkwargs)
    sl_map_normal = sl(ds)
    sl_null_prob_normal = sl.ca.null_prob.samples.copy()

    # For every feature -- we should get some variance in estimates In
    # case of failure they are all really close to each other (up to
    # numerical precision), so variance will be close to 0
    assert_array_less(-np.var(distr_est_normal.ca.dist_samples.samples[0],
                              axis=1), -1e-5)
    for s in distr_est_normal.ca.dist_samples.samples[0]:
        ok_(len(np.unique(s)) > 1)
Exemplo n.º 29
0
def test_factorialpartitioner():
    # Test against sifter and chainmap implemented in test_usecases
    # -- code below copied from test_usecases --
    # Let's simulate the beast -- 6 categories total groupped into 3
    # super-ordinate, and actually without any 'superordinate' effect
    # since subordinate categories independent
    ds = normal_feature_dataset(
        nlabels=6, snr=100, perlabel=30, nfeatures=6, nonbogus_features=range(6), nchunks=5  # pure signal! ;)
    )
    ds.sa["subord"] = ds.sa.targets.copy()
    ds.sa["superord"] = ["super%d" % (int(i[1]) % 3,) for i in ds.targets]  # 3 superord categories
    # let's override original targets just to be sure that we aren't relying on them
    ds.targets[:] = 0

    # let's make two other datasets to test later
    # one superordinate category only
    ds_1super = ds.copy()
    ds_1super.sa["superord"] = ["super1" for i in ds_1super.targets]

    # one superordinate category has only one subordinate
    # ds_unbalanced = ds.copy()
    # nsuper1 = np.sum(ds_unbalanced.sa.superord == 'super1')
    # mask_superord = ds_unbalanced.sa.superord == 'super1'
    # uniq_subord = np.unique(ds_unbalanced.sa.subord[mask_superord])
    # ds_unbalanced.sa.subord[mask_superord] = [uniq_subord[0] for i in range(nsuper1)]
    ds_unbalanced = Dataset(range(4), sa={"subord": [0, 0, 1, 2], "superord": [1, 1, 2, 2]})

    npart = ChainNode(
        [
            ## so we split based on superord
            NFoldPartitioner(len(ds.sa["superord"].unique), attr="subord"),
            ## so it should select only those splits where we took 1 from
            ## each of the superord categories leaving things in balance
            Sifter([("partitions", 2), ("superord", {"uvalues": ds.sa["superord"].unique, "balanced": True})]),
        ],
        space="partitions",
    )

    # now the new implementation
    factpart = FactorialPartitioner(NFoldPartitioner(attr="subord"), attr="superord")

    partitions_npart = [p.sa.partitions for p in npart.generate(ds)]
    partitions_factpart = [p.sa.partitions for p in factpart.generate(ds)]

    assert_array_equal(np.sort(partitions_npart), np.sort(partitions_factpart))

    # now let's check it behaves correctly if we have only one superord class
    nfold = NFoldPartitioner(attr="subord")
    partitions_nfold = [p.sa.partitions for p in nfold.generate(ds_1super)]
    partitions_factpart = [p.sa.partitions for p in factpart.generate(ds_1super)]
    assert_array_equal(np.sort(partitions_nfold), np.sort(partitions_factpart))

    # smoke test for unbalanced subord classes
    warning_msg = (
        "One or more superordinate attributes do not have the same "
        "number of subordinate attributes. This could yield to "
        "unbalanced partitions."
    )
    with assert_warnings([(RuntimeWarning, warning_msg)]):
        partitions_factpart = [p.sa.partitions for p in factpart.generate(ds_unbalanced)]

    partitions_unbalanced = [np.array([2, 2, 2, 1]), np.array([2, 2, 1, 2])]
    superord_unbalanced = [([2], [1, 1, 2]), ([2], [1, 1, 2])]
    subord_unbalanced = [([2], [0, 0, 1]), ([1], [0, 0, 2])]

    for out_part, true_part, super_out, sub_out in zip(
        partitions_factpart, partitions_unbalanced, superord_unbalanced, subord_unbalanced
    ):
        assert_array_equal(out_part, true_part)
        assert_array_equal(
            (ds_unbalanced[out_part == 1].sa.superord.tolist(), ds_unbalanced[out_part == 2].sa.superord.tolist()),
            super_out,
        )
        assert_array_equal(
            (ds_unbalanced[out_part == 1].sa.subord.tolist(), ds_unbalanced[out_part == 2].sa.subord.tolist()), sub_out
        )

    # now let's test on a dummy dataset
    ds_dummy = Dataset(range(4), sa={"subord": range(4), "superord": [1, 2] * 2})
    partitions_factpart = [p.sa.partitions for p in factpart.generate(ds_dummy)]
    assert_array_equal(partitions_factpart, [[2, 2, 1, 1], [2, 1, 1, 2], [1, 2, 2, 1], [1, 1, 2, 2]])
Exemplo n.º 30
0
def test_factorialpartitioner():
    # Test against sifter and chainmap implemented in test_usecases
    # -- code below copied from test_usecases --
    # Let's simulate the beast -- 6 categories total groupped into 3
    # super-ordinate, and actually without any 'superordinate' effect
    # since subordinate categories independent
    ds = normal_feature_dataset(
        nlabels=6,
        snr=100,  # pure signal! ;)
        perlabel=30,
        nfeatures=6,
        nonbogus_features=range(6),
        nchunks=5)
    ds.sa['subord'] = ds.sa.targets.copy()
    ds.sa['superord'] = ['super%d' % (int(i[1]) % 3, )
                         for i in ds.targets]  # 3 superord categories
    # let's override original targets just to be sure that we aren't relying on them
    ds.targets[:] = 0

    # let's make two other datasets to test later
    # one superordinate category only
    ds_1super = ds.copy()
    ds_1super.sa['superord'] = ['super1' for i in ds_1super.targets]

    # one superordinate category has only one subordinate
    #ds_unbalanced = ds.copy()
    #nsuper1 = np.sum(ds_unbalanced.sa.superord == 'super1')
    #mask_superord = ds_unbalanced.sa.superord == 'super1'
    #uniq_subord = np.unique(ds_unbalanced.sa.subord[mask_superord])
    #ds_unbalanced.sa.subord[mask_superord] = [uniq_subord[0] for i in range(nsuper1)]
    ds_unbalanced = Dataset(range(4),
                            sa={
                                'subord': [0, 0, 1, 2],
                                'superord': [1, 1, 2, 2]
                            })

    npart = ChainNode(
        [
            ## so we split based on superord
            NFoldPartitioner(len(ds.sa['superord'].unique), attr='subord'),
            ## so it should select only those splits where we took 1 from
            ## each of the superord categories leaving things in balance
            Sifter([('partitions', 2),
                    ('superord', {
                        'uvalues': ds.sa['superord'].unique,
                        'balanced': True
                    })]),
        ],
        space='partitions')

    # now the new implementation
    factpart = FactorialPartitioner(NFoldPartitioner(attr='subord'),
                                    attr='superord')

    partitions_npart = [p.sa.partitions for p in npart.generate(ds)]
    partitions_factpart = [p.sa.partitions for p in factpart.generate(ds)]

    assert_array_equal(np.sort(partitions_npart), np.sort(partitions_factpart))

    # now let's check it behaves correctly if we have only one superord class
    nfold = NFoldPartitioner(attr='subord')
    partitions_nfold = [p.sa.partitions for p in nfold.generate(ds_1super)]
    partitions_factpart = [
        p.sa.partitions for p in factpart.generate(ds_1super)
    ]
    assert_array_equal(np.sort(partitions_nfold), np.sort(partitions_factpart))

    # smoke test for unbalanced subord classes
    warning_msg = 'One or more superordinate attributes do not have the same '\
                  'number of subordinate attributes. This could yield to '\
                  'unbalanced partitions.'
    with assert_warnings([(RuntimeWarning, warning_msg)]):
        partitions_factpart = [
            p.sa.partitions for p in factpart.generate(ds_unbalanced)
        ]

    partitions_unbalanced = [np.array([2, 2, 2, 1]), np.array([2, 2, 1, 2])]
    superord_unbalanced = [([2], [1, 1, 2]), ([2], [1, 1, 2])]
    subord_unbalanced = [([2], [0, 0, 1]), ([1], [0, 0, 2])]

    for out_part, true_part, super_out, sub_out in \
            zip(partitions_factpart, partitions_unbalanced,
                superord_unbalanced, subord_unbalanced):
        assert_array_equal(out_part, true_part)
        assert_array_equal((ds_unbalanced[out_part == 1].sa.superord.tolist(),
                            ds_unbalanced[out_part == 2].sa.superord.tolist()),
                           super_out)
        assert_array_equal((ds_unbalanced[out_part == 1].sa.subord.tolist(),
                            ds_unbalanced[out_part == 2].sa.subord.tolist()),
                           sub_out)

    # now let's test on a dummy dataset
    ds_dummy = Dataset(range(4),
                       sa={
                           'subord': range(4),
                           'superord': [1, 2] * 2
                       })
    partitions_factpart = [
        p.sa.partitions for p in factpart.generate(ds_dummy)
    ]
    assert_array_equal(
        partitions_factpart,
        [[2, 2, 1, 1], [2, 1, 1, 2], [1, 2, 2, 1], [1, 1, 2, 2]])
Exemplo n.º 31
0
def hist(dataset,
         xgroup_attr=None,
         ygroup_attr=None,
         xlim=None,
         ylim=None,
         noticks=False,
         **kwargs):
    """Compute and draw feature histograms (for groups of samples)

    This is a convenience wrapper around matplotlib's hist() function.  It
    supports it entire API, but data is taken from an input dataset.  In
    addition, feature histograms for groups of dataset samples can be drawn as
    an array of subplots. Using ``xgroup_attr`` and ``ygroup_attr`` up to two
    sample attributes can be selected and samples groups are defined by their
    unique values. For example, plotting histograms for all combinations of
    ``targets`` and ``chunks`` attribute values in a dataset is done by this
    code:

    >>> from mvpa2.viz import hist
    >>> from mvpa2.misc.data_generators import normal_feature_dataset
    >>> ds = normal_feature_dataset(10, 3, 10, 5)
    >>> plots = hist(ds, ygroup_attr='targets', xgroup_attr='chunks',
    ...              noticks=None, xlim=(-.5,.5), normed=True)
    >>> len(plots)
    15

    This function can also be used with plain arrays, in which case it will
    fall back on the behavior of matplotlib's hist() and additional
    functionality is not available.

    Parameters
    ----------
    dataset : Dataset or array
    xgroup_attr : string, optional
      Name of a samples attribute to be used as targets
    ygroup_attr : None or string, optional
      If a string, a histogram will be plotted per each target and each
      chunk (as defined in sa named `chunks_attr`), resulting is a
      histogram grid (targets x chunks).
    xlim : None or 2-tuple, optional
      Common x-axis limits for all histograms.
    ylim : None or 2-tuple, optional
      Common y-axis limits for all histograms.
    noticks : bool or None, optional
      If True, no axis ticks will be plotted. If False, each histogram subplot
      will have its own ticks. If None, only the outer subplots will
      have ticks. This is useful to save space in large plots, but should be
      combined with ``xlim`` and ``ylim`` arguments in order to ensure equal
      axes across subplots.
    **kwargs
      Any additional arguments are passed to matplotlib's hist().

    Returns
    -------
    list
      List of figure handlers for all generated subplots.
    """
    xgroup = {'attr': xgroup_attr}
    ygroup = {'attr': ygroup_attr}
    for grp in (xgroup, ygroup):
        if grp['attr'] is not None and is_datasetlike(dataset):
            grp['split'] = ChainNode([
                NFoldPartitioner(1, attr=grp['attr']),
                Splitter('partitions', attr_values=[2])
            ])
            grp['gen'] = lambda s, x: s.generate(x)
            grp['npanels'] = len(dataset.sa[grp['attr']].unique)
        else:
            grp['split'] = None
            grp['gen'] = lambda s, x: [x]
            grp['npanels'] = 1

    fig = 1
    nrows = ygroup['npanels']
    ncols = xgroup['npanels']
    subplots = []
    # for all labels
    for row, ds in enumerate(ygroup['gen'](ygroup['split'], dataset)):
        for col, d in enumerate(xgroup['gen'](xgroup['split'], ds)):
            ax = pl.subplot(nrows, ncols, fig)
            if is_datasetlike(d):
                data = d.samples
            else:
                data = d
            ax.hist(data.ravel(), **kwargs)
            if xlim is not None:
                pl.xlim(xlim)

            if noticks is True or (noticks is None and row < nrows - 1):
                pl.xticks([])
            if noticks is True or (noticks is None and col > 0):
                pl.yticks([])

            if ncols > 1 and row == 0:
                pl.title(str(d.sa[xgroup['attr']].unique[0]))
            if nrows > 1 and col == 0:
                pl.ylabel(str(d.sa[ygroup['attr']].unique[0]))
            fig += 1
            subplots.append(ax)
    return subplots
Exemplo n.º 32
0
 def _call(self, ds):
    return ChainNode._call(self, ds)
Exemplo n.º 33
0
def get_crossvalidation_instance(learner,
                                 partitioner,
                                 errorfx,
                                 sampling_repetitions=1,
                                 learner_space='targets',
                                 balance_training=None,
                                 permutations=0,
                                 avg_datafold_results=True,
                                 prob_tail='left'):
    from mvpa2.base.node import ChainNode
    from mvpa2.measures.base import CrossValidation
    if not balance_training is None:
        # balance training data
        try:
            amount = int(balance_training)
        except ValueError:
            try:
                amount = float(balance_training)
            except ValueError:
                amount = balance_training
        from mvpa2.generators.resampling import Balancer
        balancer = Balancer(amount=amount,
                            attr=learner_space,
                            count=sampling_repetitions,
                            limit={partitioner.get_space(): 1},
                            apply_selection=True,
                            include_offlimit=True)
    else:
        balancer = None
    # set learner space
    learner.set_space(learner_space)
    # setup generator for data folding -- put in a chain node for easy
    # amending
    gennode = ChainNode([partitioner], space=partitioner.get_space())
    if avg_datafold_results:
        from mvpa2.mappers.fx import mean_sample
        postproc = mean_sample()
    else:
        postproc = None
    if not balancer is None:
        # enable balancing step for each partitioning step
        gennode.append(balancer)
    if permutations > 0:
        from mvpa2.generators.base import Repeater
        from mvpa2.generators.permutation import AttributePermutator
        from mvpa2.clfs.stats import MCNullDist
        # how often do we want to shuffle the data
        repeater = Repeater(count=permutations)
        # permute the training part of a dataset exactly ONCE
        permutator = AttributePermutator(learner_space,
                                         limit={partitioner.get_space(): 1},
                                         count=1)
        # CV with null-distribution estimation that permutes the training data for
        # each fold independently
        perm_gen_node = copy.deepcopy(gennode)
        perm_gen_node.append(permutator)
        null_cv = CrossValidation(learner,
                                  perm_gen_node,
                                  postproc=postproc,
                                  errorfx=errorfx)
        # Monte Carlo distribution estimator
        distr_est = MCNullDist(repeater,
                               tail=prob_tail,
                               measure=null_cv,
                               enable_ca=['dist_samples'])
        # pass the p-values as feature attributes on to the results
        pass_attr = [('ca.null_prob', 'fa', 1)]
    else:
        distr_est = None
        pass_attr = None
    # final CV node
    cv = CrossValidation(learner,
                         gennode,
                         errorfx=errorfx,
                         null_dist=distr_est,
                         postproc=postproc,
                         enable_ca=['stats', 'null_prob'],
                         pass_attr=pass_attr)
    return cv
Exemplo n.º 34
0
def test_confusion_as_node():
    from mvpa2.misc.data_generators import normal_feature_dataset
    from mvpa2.clfs.gnb import GNB
    from mvpa2.clfs.transerror import Confusion
    ds = normal_feature_dataset(snr=2.0, perlabel=42, nchunks=3,
                                nonbogus_features=[0,1], nfeatures=2)
    clf = GNB()
    cv = CrossValidation(
        clf, NFoldPartitioner(),
        errorfx=None,
        postproc=Confusion(labels=ds.UT),
        enable_ca=['stats'])
    res = cv(ds)
    # needs to be identical to CA
    assert_array_equal(res.samples, cv.ca.stats.matrix)
    assert_array_equal(res.sa.predictions, ds.UT)
    assert_array_equal(res.fa.targets, ds.UT)

    skip_if_no_external('scipy')

    from mvpa2.clfs.transerror import BayesConfusionHypothesis
    from mvpa2.base.node import ChainNode
    # same again, but this time with Bayesian hypothesis testing at the end
    cv = CrossValidation(
        clf, NFoldPartitioner(),
        errorfx=None,
        postproc=ChainNode([Confusion(labels=ds.UT),
                            BayesConfusionHypothesis()]))
    res = cv(ds)
    # only two possible hypothesis with two classes
    assert_equals(len(res), 2)
    # the first hypothesis is the can't discriminate anything
    assert_equal(len(res.sa.hypothesis[0]), 1)
    assert_equal(len(res.sa.hypothesis[0][0]), 2)
    # and the hypothesis is actually less likely than the other one
    # (both classes can be distinguished)
    assert(np.e**res.samples[0,0] < np.e**res.samples[1,0])

    # Let's see how well it would work within the searchlight when we also
    # would like to store the hypotheses per each voxel
    # Somewhat an ad-hoc solution for the answer posted on the ML
    #
    # run 1d searchlight of radii 0, for that just provide a .fa with coordinates
    ds.fa['voxel_indices'] = [[0], [1]]
    # and a custom Node which would collect .sa.hypothesis to place together along
    # with the posterior probabilities
    from mvpa2.base.node import Node
    from mvpa2.measures.searchlight import sphere_searchlight

    class KeepBothPosteriorAndHypothesis(Node):
        def _call(self, ds):
            out = np.zeros(1, dtype=object)
            out[0] = (ds.samples, ds.sa.hypothesis)
            return out
    cv.postproc.append(KeepBothPosteriorAndHypothesis())
    sl = sphere_searchlight(cv, radius=0, nproc=1)
    res = sl(ds)

    assert_equal(res.shape, (1, 2))
    assert_equal(len(res.samples[0,0]), 2)
    assert_equal(res.samples[0,0][0].shape, (2, 2))   # posteriors per 1st SL
    assert_equal(len(res.samples[0,0][1]), 2)   # 2 of hypotheses
Exemplo n.º 35
0
def plot_feature_hist(dataset, xlim=None, noticks=True,
                      targets_attr='targets', chunks_attr=None,
                    **kwargs):
    """Plot histograms of feature values for each labels.

    Parameters
    ----------
    dataset : Dataset
    xlim : None or 2-tuple
      Common x-axis limits for all histograms.
    noticks : bool
      If True, no axis ticks will be plotted. This is useful to save
      space in large plots.
    targets_attr : string, optional
      Name of samples attribute to be used as targets
    chunks_attr : None or string
      If a string, a histogram will be plotted per each target and each
      chunk (as defined in sa named `chunks_attr`), resulting is a
      histogram grid (targets x chunks).
    **kwargs
      Any additional arguments are passed to matplotlib's hist().
    """
    lsplit = ChainNode([NFoldPartitioner(1, attr=targets_attr),
                        Splitter('partitions', attr_values=[2])])
    csplit = ChainNode([NFoldPartitioner(1, attr=chunks_attr),
                        Splitter('partitions', attr_values=[2])])

    nrows = len(dataset.sa[targets_attr].unique)
    ncols = len(dataset.sa[chunks_attr].unique)

    def doplot(data):
        """Just a little helper which plots the histogram and removes
        ticks etc"""

        pl.hist(data, **kwargs)

        if xlim is not None:
            pl.xlim(xlim)

        if noticks:
            pl.yticks([])
            pl.xticks([])

    fig = 1

    # for all labels
    for row, ds in enumerate(lsplit.generate(dataset)):
        if chunks_attr:
            for col, d in enumerate(csplit.generate(ds)):

                pl.subplot(nrows, ncols, fig)
                doplot(d.samples.ravel())

                if row == 0:
                    pl.title('C:' + str(d.sa[chunks_attr].unique[0]))
                if col == 0:
                    pl.ylabel('L:' + str(d.sa[targets_attr].unique[0]))

                fig += 1
        else:
            pl.subplot(1, nrows, fig)
            doplot(ds.samples)

            pl.title('L:' + str(ds.sa[targets_attr].unique[0]))

            fig += 1
Exemplo n.º 36
0
 def _call(self, ds):
     return ChainNode._call(self, ds)
Exemplo n.º 37
0
def test_factorialpartitioner():
    # Test against sifter and chainmap implemented in test_usecases
    # -- code below copied from test_usecases --
    # Let's simulate the beast -- 6 categories total groupped into 3
    # super-ordinate, and actually without any 'superordinate' effect
    # since subordinate categories independent
    ds = normal_feature_dataset(
        nlabels=6,
        snr=100,  # pure signal! ;)
        perlabel=30,
        nfeatures=6,
        nonbogus_features=range(6),
        nchunks=5)
    ds.sa['subord'] = ds.sa.targets.copy()
    ds.sa['superord'] = ['super%d' % (int(i[1]) % 3, )
                         for i in ds.targets]  # 3 superord categories
    # let's override original targets just to be sure that we aren't relying on them
    ds.targets[:] = 0

    # let's make two other datasets to test later
    # one superordinate category only
    ds_1super = ds.copy()
    ds_1super.sa['superord'] = ['super1' for i in ds_1super.targets]

    # one superordinate category has only one subordinate
    #ds_unbalanced = ds.copy()
    #nsuper1 = np.sum(ds_unbalanced.sa.superord == 'super1')
    #mask_superord = ds_unbalanced.sa.superord == 'super1'
    #uniq_subord = np.unique(ds_unbalanced.sa.subord[mask_superord])
    #ds_unbalanced.sa.subord[mask_superord] = [uniq_subord[0] for i in range(nsuper1)]
    ds_unbalanced = Dataset(range(4),
                            sa={
                                'subord': [0, 0, 1, 2],
                                'superord': [1, 1, 2, 2]
                            })

    npart = ChainNode(
        [
            ## so we split based on superord
            NFoldPartitioner(len(ds.sa['superord'].unique), attr='subord'),
            ## so it should select only those splits where we took 1 from
            ## each of the superord categories leaving things in balance
            Sifter([('partitions', 2),
                    ('superord', {
                        'uvalues': ds.sa['superord'].unique,
                        'balanced': True
                    })]),
        ],
        space='partitions')

    def partition(partitioner, ds_=ds):
        return [p.sa.partitions for p in partitioner.generate(ds_)]

    # now the new implementation
    # common kwargs
    factkw = dict(partitioner=NFoldPartitioner(attr='subord'), attr='superord')

    fpart = FactorialPartitioner(**factkw)
    p_npart = partition(npart)
    p_fpart = partition(fpart)

    assert_array_equal(np.sort(p_npart), np.sort(p_fpart))

    fpart2 = FactorialPartitioner(count=2,
                                  selection_strategy='first',
                                  **factkw)
    p_fpart2 = partition(fpart2)
    assert_equal(len(p_fpart), 8)
    assert_equal(len(p_fpart2), 2)
    assert_array_equal(p_fpart[:2], p_fpart2)

    # 1 equidistant -- should be the first one
    fpart1 = FactorialPartitioner(count=1, **factkw)
    p_fpart1 = partition(fpart1)
    assert_equal(len(p_fpart1), 1)
    assert_array_equal(p_fpart[:1], p_fpart1)

    # 2 equidistant
    fpart2 = FactorialPartitioner(count=2, **factkw)
    p_fpart2 = partition(fpart2)
    assert_equal(len(p_fpart2), 2)
    assert_array_equal(p_fpart[::4], p_fpart2)

    # without count -- should be all of them in original order
    fpartr = FactorialPartitioner(selection_strategy='random', **factkw)
    assert_array_equal(p_fpart, partition(fpartr))

    # but if with a count we should get some selection
    fpartr2 = FactorialPartitioner(selection_strategy='random',
                                   count=2,
                                   **factkw)
    # Let's generate a number of random selections:
    rand2_partitions = [partition(fpartr2) for i in xrange(10)]
    for p in rand2_partitions:
        assert_equal(len(p), 2)
    # majority of them must be different
    assert len(set([tuple(map(tuple, x)) for x in rand2_partitions])) >= 5

    # now let's check it behaves correctly if we have only one superord class
    nfold = NFoldPartitioner(attr='subord')
    p_nfold = partition(nfold, ds_1super)
    p_fpart = partition(fpart, ds_1super)
    assert_array_equal(np.sort(p_nfold), np.sort(p_fpart))

    # smoke test for unbalanced subord classes
    warning_msg = 'One or more superordinate attributes do not have the same '\
                  'number of subordinate attributes. This could yield to '\
                  'unbalanced partitions.'
    with assert_warnings([(RuntimeWarning, warning_msg)]):
        p_fpart = partition(fpart, ds_unbalanced)

    p_unbalanced = [np.array([2, 2, 2, 1]), np.array([2, 2, 1, 2])]
    superord_unbalanced = [([2], [1, 1, 2]), ([2], [1, 1, 2])]
    subord_unbalanced = [([2], [0, 0, 1]), ([1], [0, 0, 2])]

    for out_part, true_part, super_out, sub_out in \
            zip(p_fpart, p_unbalanced,
                superord_unbalanced, subord_unbalanced):
        assert_array_equal(out_part, true_part)
        assert_array_equal((ds_unbalanced[out_part == 1].sa.superord.tolist(),
                            ds_unbalanced[out_part == 2].sa.superord.tolist()),
                           super_out)
        assert_array_equal((ds_unbalanced[out_part == 1].sa.subord.tolist(),
                            ds_unbalanced[out_part == 2].sa.subord.tolist()),
                           sub_out)

    # now let's test on a dummy dataset
    ds_dummy = Dataset(range(4),
                       sa={
                           'subord': range(4),
                           'superord': [1, 2] * 2
                       })
    p_fpart = partition(fpart, ds_dummy)
    assert_array_equal(
        p_fpart, [[2, 2, 1, 1], [2, 1, 1, 2], [1, 2, 2, 1], [1, 1, 2, 2]])