Exemplo n.º 1
0
    def __test_matthias_question(self):
        rfe_clf = LinearCSVMC(C=1)

        rfesvm_split = SplitClassifier(rfe_clf)
        clf = \
            FeatureSelectionClassifier(
            clf = LinearCSVMC(C=1),
            feature_selection = RFE(
                sensitivity_analyzer = rfesvm_split.get_sensitivity_analyzer(
                    combiner=first_axis_mean,
                    transformer=np.abs),
                transfer_error=ConfusionBasedError(
                    rfesvm_split,
                    confusion_state="confusion"),
                stopping_criterion=FixedErrorThresholdStopCrit(0.20),
                feature_selector=FractionTailSelector(
                    0.2, mode='discard', tail='lower'),
                update_sensitivity=True))

        no_permutations = 1000
        permutator = AttributePermutator('targets', count=no_permutations)
        cv = CrossValidation(clf,
                             NFoldPartitioner(),
                             null_dist=MCNullDist(permutator, tail='left'),
                             enable_ca=['stats'])
        error = cv(datasets['uni2small'])
        self.assertTrue(error < 0.4)
        self.assertTrue(cv.ca.null_prob < 0.05)
Exemplo n.º 2
0
def test_splitclf_sensitivities():
    datasets = [
        normal_feature_dataset(perlabel=100,
                               nlabels=2,
                               nfeatures=4,
                               nonbogus_features=[0, i + 1],
                               snr=1,
                               nchunks=2) for i in xrange(2)
    ]

    sclf = SplitClassifier(SMLR(), NFoldPartitioner())
    analyzer = sclf.get_sensitivity_analyzer()

    senses1 = analyzer(datasets[0])
    senses2 = analyzer(datasets[1])

    for senses in senses1, senses2:
        # This should be False when comparing two folds
        assert_false(np.allclose(senses.samples[0], senses.samples[2]))
        assert_false(np.allclose(senses.samples[1], senses.samples[3]))
    # Moreover with new data we should have got different results
    # (i.e. it must retrained correctly)
    for s1, s2 in zip(senses1, senses2):
        assert_false(np.allclose(s1, s2))

    # and we should have "selected" "correct" voxels
    for i, senses in enumerate((senses1, senses2)):
        assert_equal(set(np.argsort(np.max(np.abs(senses), axis=0))[-2:]),
                     set((0, i + 1)))
Exemplo n.º 3
0
    def test_split_clf_on_chainpartitioner(self):
        # pretty much a smoke test for #156
        ds = datasets['uni2small']
        part = ChainNode([
            NFoldPartitioner(cvtype=1),
            Balancer(attr='targets',
                     count=2,
                     limit='partitions',
                     apply_selection=True)
        ])
        partitions = list(part.generate(ds))
        sclf = SplitClassifier(sample_clf_lin,
                               part,
                               enable_ca=['stats', 'splits'])
        sclf.train(ds)
        pred = sclf.predict(ds)
        assert_equal(len(pred), len(ds))  # rudimentary check
        assert_equal(len(sclf.ca.splits), len(partitions))
        assert_equal(len(sclf.clfs), len(partitions))

        # now let's do sensitivity analyzer just in case
        sclf.untrain()
        sensana = sclf.get_sensitivity_analyzer()
        sens = sensana(ds)
        # basic check that sensitivities varied across splits
        from mvpa2.mappers.fx import FxMapper
        sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens)
        assert_true(np.any(sens_stds != 0))
Exemplo n.º 4
0
    def __test_matthias_question(self):
        rfe_clf = LinearCSVMC(C=1)

        rfesvm_split = SplitClassifier(rfe_clf)
        clf = \
            FeatureSelectionClassifier(
            clf = LinearCSVMC(C=1),
            feature_selection = RFE(
                sensitivity_analyzer = rfesvm_split.get_sensitivity_analyzer(
                    combiner=first_axis_mean,
                    transformer=np.abs),
                transfer_error=ConfusionBasedError(
                    rfesvm_split,
                    confusion_state="confusion"),
                stopping_criterion=FixedErrorThresholdStopCrit(0.20),
                feature_selector=FractionTailSelector(
                    0.2, mode='discard', tail='lower'),
                update_sensitivity=True))

        no_permutations = 1000
        permutator = AttributePermutator('targets', count=no_permutations)
        cv = CrossValidation(clf, NFoldPartitioner(),
            null_dist=MCNullDist(permutator, tail='left'),
            enable_ca=['stats'])
        error = cv(datasets['uni2small'])
        self.assertTrue(error < 0.4)
        self.assertTrue(cv.ca.null_prob < 0.05)
Exemplo n.º 5
0
def test_splitclf_sensitivities():
    datasets = [normal_feature_dataset(perlabel=100, nlabels=2,
                                       nfeatures=4,
                                       nonbogus_features=[0, i + 1],
                                       snr=1, nchunks=2)
                for i in xrange(2)]

    sclf = SplitClassifier(SMLR(),
                           NFoldPartitioner())
    analyzer = sclf.get_sensitivity_analyzer()

    senses1 = analyzer(datasets[0])
    senses2 = analyzer(datasets[1])

    for senses in senses1, senses2:
        # This should be False when comparing two folds
        assert_false(np.allclose(senses.samples[0],
                                 senses.samples[2]))
        assert_false(np.allclose(senses.samples[1],
                                 senses.samples[3]))
    # Moreover with new data we should have got different results
    # (i.e. it must retrained correctly)
    for s1, s2 in zip(senses1, senses2):
        assert_false(np.allclose(s1, s2))

    # and we should have "selected" "correct" voxels
    for i, senses in enumerate((senses1, senses2)):
        assert_equal(set(np.argsort(np.max(np.abs(senses), axis=0))[-2:]),
                     set((0, i + 1)))
Exemplo n.º 6
0
    def test_split_clf(self):
        # set up the classifier
        sclf = SplitClassifier(SMLR(),
                               NFoldPartitioner())

        analyzer = sclf.get_sensitivity_analyzer()

        senses = analyzer(self.dataset)

        # This should be False when comparing two folds
        assert_false(np.allclose(senses.samples[0],senses.samples[2]))
Exemplo n.º 7
0
    def __test_fspipeline_with_split_classifier(self, basic_clf):
        #basic_clf = LinearNuSVMC()
        multi_clf = MulticlassClassifier(clf=basic_clf)
        #svm_weigths = LinearSVMWeights(svm)

        # Proper RFE: aggregate sensitivities across multiple splits,
        # but also due to multi class those need to be aggregated
        # somehow. Transfer error here should be 'leave-1-out' error
        # of split classifier itself
        sclf = SplitClassifier(clf=basic_clf)
        rfe = RFE(sensitivity_analyzer=sclf.get_sensitivity_analyzer(
            enable_ca=["sensitivities"]),
                  transfer_error=trans_error,
                  feature_selector=FeatureSelectionPipeline([
                      FractionTailSelector(0.5),
                      FixedNElementTailSelector(1)
                  ]),
                  train_pmeasure=True)

        # and we get sensitivity analyzer which works on splits and uses
        # sensitivity
        selected_features = rfe(self.dataset)
Exemplo n.º 8
0
    def test_split_clf_on_chainpartitioner(self):
        # pretty much a smoke test for #156
        ds = datasets['uni2small']
        part = ChainNode([NFoldPartitioner(cvtype=1),
                          Balancer(attr='targets', count=2,
                                   limit='partitions', apply_selection=True)])
        partitions = list(part.generate(ds))
        sclf = SplitClassifier(sample_clf_lin, part, enable_ca=['stats', 'splits'])
        sclf.train(ds)
        pred = sclf.predict(ds)
        assert_equal(len(pred), len(ds))  # rudimentary check
        assert_equal(len(sclf.ca.splits), len(partitions))
        assert_equal(len(sclf.clfs), len(partitions))

        # now let's do sensitivity analyzer just in case
        sclf.untrain()
        sensana = sclf.get_sensitivity_analyzer()
        sens = sensana(ds)
        # basic check that sensitivities varied across splits
        from mvpa2.mappers.fx import FxMapper
        sens_stds = FxMapper('samples', np.std, uattrs=['targets'])(sens)
        assert_true(np.any(sens_stds != 0))
Exemplo n.º 9
0
    def __test_fspipeline_with_split_classifier(self, basic_clf):
        #basic_clf = LinearNuSVMC()
        multi_clf = MulticlassClassifier(clf=basic_clf)
        #svm_weigths = LinearSVMWeights(svm)

        # Proper RFE: aggregate sensitivities across multiple splits,
        # but also due to multi class those need to be aggregated
        # somehow. Transfer error here should be 'leave-1-out' error
        # of split classifier itself
        sclf = SplitClassifier(clf=basic_clf)
        rfe = RFE(sensitivity_analyzer=
                    sclf.get_sensitivity_analyzer(
                        enable_ca=["sensitivities"]),
                  transfer_error=trans_error,
                  feature_selector=FeatureSelectionPipeline(
                      [FractionTailSelector(0.5),
                       FixedNElementTailSelector(1)]),
                  train_pmeasure=True)

        # and we get sensitivity analyzer which works on splits and uses
        # sensitivity
        selected_features = rfe(self.dataset)
Exemplo n.º 10
0
    def test_analyzer_with_split_classifier(self, clfds):
        """Test analyzers in split classifier
        """
        clf, ds = clfds  # unroll the tuple
        # We need to skip some LARSes here
        _sclf = str(clf)
        if 'LARS(' in _sclf and "type='stepwise'" in _sclf:
            # ADD KnownToFail thingie from NiPy
            return

        # To don't waste too much time testing lets limit to 3 splits
        nsplits = 3
        partitioner = NFoldPartitioner(count=nsplits)
        mclf = SplitClassifier(clf=clf,
                               partitioner=partitioner,
                               enable_ca=['training_stats', 'stats'])
        sana = mclf.get_sensitivity_analyzer(  # postproc=absolute_features(),
            pass_attr=['fa.nonbogus_targets'],
            enable_ca=["sensitivities"])

        ulabels = ds.uniquetargets
        nlabels = len(ulabels)
        # Can't rely on splitcfg since count-limit is done in __call__
        assert (nsplits == len(list(partitioner.generate(ds))))
        sens = sana(ds)
        assert ('nonbogus_targets' in sens.fa)  # were they passsed?
        # TODO: those few do not expose biases
        if not len(set(clf.__tags__).intersection(('lars', 'glmnet', 'gpr'))):
            assert ('biases' in sens.sa)
            # print sens.sa.biases
        # It should return either ...
        #  nlabels * nsplits
        req_nsamples = [nlabels * nsplits]
        if nlabels == 2:
            # A single sensitivity in case of binary
            req_nsamples += [nsplits]
        else:
            # and for pairs in case of multiclass
            req_nsamples += [(nlabels * (nlabels - 1) / 2) * nsplits]
            # and for 1-vs-1 embedded within Multiclass operating on
            # pairs (e.g. SMLR)
            req_nsamples += [req_nsamples[-1] * 2]

            # Also for regression_based -- they can do multiclass
            # but only 1 sensitivity is provided
            if 'regression_based' in clf.__tags__:
                req_nsamples += [nsplits]

        # # of features should correspond
        self.assertEqual(sens.shape[1], ds.nfeatures)
        # # of samples/sensitivities should also be reasonable
        self.assertTrue(sens.shape[0] in req_nsamples)

        # Check if labels are present
        self.assertTrue('splits' in sens.sa)
        self.assertTrue('targets' in sens.sa)
        # should be 1D -- otherwise dtype object
        self.assertTrue(sens.sa.targets.ndim == 1)

        sens_ulabels = sens.sa['targets'].unique
        # Some labels might be pairs(tuples) so ndarray would be of
        # dtype object and we would need to get them all
        if sens_ulabels.dtype is np.dtype('object'):
            sens_ulabels = np.unique(
                reduce(lambda x, y: x + y, [list(x) for x in sens_ulabels]))

        assert_array_equal(sens_ulabels, ds.sa['targets'].unique)

        errors = [x.percent_correct for x in sana.clf.ca.stats.matrices]

        # lets go through all sensitivities and see if we selected the right
        # features
        #if 'meta' in clf.__tags__ and len(sens.samples[0].nonzero()[0])<2:
        if '5%' in clf.descr \
               or (nlabels > 2 and 'regression_based' in clf.__tags__):
            # Some meta classifiers (5% of ANOVA) are too harsh ;-)
            # if we get less than 2 features with on-zero sensitivities we
            # cannot really test
            # Also -- regression based classifiers performance for multiclass
            # is expected to suck in general
            return

        if cfg.getboolean('tests', 'labile', default='yes'):
            for conf_matrix in [sana.clf.ca.training_stats] \
                              + sana.clf.ca.stats.matrices:
                self.assertTrue(
                    conf_matrix.percent_correct>=70,
                    msg="We must have trained on each one more or " \
                    "less correctly. Got %f%% correct on %d labels" %
                    (conf_matrix.percent_correct,
                     nlabels))

        # Since  now we have per split and possibly per label -- lets just find
        # mean per each feature per label across splits
        sensm = FxMapper('samples', lambda x: np.sum(x),
                         uattrs=['targets']).forward(sens)
        sensgm = maxofabs_sample().forward(sensm)  # global max of abs of means

        assert_equal(sensgm.shape[0], 1)
        assert_equal(sensgm.shape[1], ds.nfeatures)

        selected = FixedNElementTailSelector(len(ds.a.bogus_features))(
            sensgm.samples[0])

        if cfg.getboolean('tests', 'labile', default='yes'):

            self.assertEqual(
                set(selected),
                set(ds.a.nonbogus_features),
                msg="At the end we should have selected the right features. "
                "Chose %s whenever nonbogus are %s" %
                (selected, ds.a.nonbogus_features))

            # Now test each one per label
            # TODO: collect all failures and spit them out at once --
            #       that would make it easy to see if the sensitivity
            #       just has incorrect order of labels assigned
            for sens1 in sensm:
                labels1 = sens1.targets  # labels (1) for this sensitivity
                lndim = labels1.ndim
                label = labels1[0]  # current label

                # XXX whole lndim comparison should be gone after
                #     things get fixed and we arrive here with a tuple!
                if lndim == 1:  # just a single label
                    self.assertTrue(label in ulabels)

                    ilabel_all = np.where(ds.fa.nonbogus_targets == label)[0]
                    # should have just 1 feature for the label
                    self.assertEqual(len(ilabel_all), 1)
                    ilabel = ilabel_all[0]

                    maxsensi = np.argmax(sens1)  # index of max sensitivity
                    self.assertEqual(
                        maxsensi, ilabel,
                        "Maximal sensitivity for %s was found in %i whenever"
                        " original feature was %i for nonbogus features %s" %
                        (labels1, maxsensi, ilabel, ds.a.nonbogus_features))
                elif lndim == 2 and labels1.shape[1] == 2:  # pair of labels
                    # we should have highest (in abs) coefficients in
                    # those two labels
                    maxsensi2 = np.argsort(np.abs(sens1))[0][-2:]
                    ilabel2 = [
                        np.where(ds.fa.nonbogus_targets == l)[0][0]
                        for l in label
                    ]
                    self.assertEqual(
                        set(maxsensi2), set(ilabel2),
                        "Maximal sensitivity for %s was found in %s whenever"
                        " original features were %s for nonbogus features %s" %
                        (labels1, maxsensi2, ilabel2, ds.a.nonbogus_features))
                    """
                    # Now test for the sign of each one in pair ;) in
                    # all binary problems L1 (-1) -> L2(+1), then
                    # weights for L2 should be positive.  to test for
                    # L1 -- invert the sign
                    # We already know (if we haven't failed in previous test),
                    # that those 2 were the strongest -- so check only signs
                    """
                    self.assertTrue(
                        sens1.samples[0, ilabel2[0]] < 0,
                        "With %i classes in pair %s got feature %i for %r >= 0"
                        % (nlabels, label, ilabel2[0], label[0]))
                    self.assertTrue(
                        sens1.samples[0, ilabel2[1]] > 0,
                        "With %i classes in pair %s got feature %i for %r <= 0"
                        % (nlabels, label, ilabel2[1], label[1]))
                else:
                    # yoh could be wrong at this assumption... time will show
                    self.fail("Got unknown number labels per sensitivity: %s."
                              " Should be either a single label or a pair" %
                              labels1)
Exemplo n.º 11
0
    def test_rfe(self, clf):

        # sensitivity analyser and transfer error quantifier use the SAME clf!
        sens_ana = clf.get_sensitivity_analyzer(postproc=maxofabs_sample())
        pmeasure = ProxyMeasure(clf,
                                postproc=BinaryFxNode(mean_mismatch_error,
                                                      'targets'))
        cvmeasure = CrossValidation(clf,
                                    NFoldPartitioner(),
                                    errorfx=mean_mismatch_error,
                                    postproc=mean_sample())

        rfesvm_split = SplitClassifier(clf, OddEvenPartitioner())

        # explore few recipes
        for rfe, data in [
                # because the clf is already trained when computing the sensitivity
                # map, prevent retraining for transfer error calculation
                # Use absolute of the svm weights as sensitivity
            (RFE(sens_ana,
                 pmeasure,
                 Splitter('train'),
                 fselector=FixedNElementTailSelector(1),
                 train_pmeasure=False), self.get_data()),
                # use cross-validation within training to get error for the stopping point
                # but use full training data to derive sensitivity
            (
                RFE(
                    sens_ana,
                    cvmeasure,
                    Repeater(
                        2
                    ),  # give the same full dataset to sens_ana and cvmeasure
                    fselector=FractionTailSelector(0.70,
                                                   mode='select',
                                                   tail='upper'),
                    train_pmeasure=True),
                normal_feature_dataset(perlabel=20,
                                       nchunks=5,
                                       nfeatures=200,
                                       nonbogus_features=[0, 1],
                                       snr=1.5)),
                # use cross-validation (via SplitClassifier) and get mean
                # of normed sensitivities across those splits
            (
                RFE(
                    rfesvm_split.get_sensitivity_analyzer(
                        postproc=ChainMapper([
                            FxMapper('features', l2_normed),
                            FxMapper('samples', np.mean),
                            FxMapper('samples', np.abs)
                        ])),
                    ConfusionBasedError(rfesvm_split, confusion_state='stats'),
                    Repeater(
                        2),  #  we will use the same full cv-training dataset
                    fselector=FractionTailSelector(0.50,
                                                   mode='select',
                                                   tail='upper'),
                    stopping_criterion=NBackHistoryStopCrit(
                        BestDetector(), 10),
                    train_pmeasure=
                    False,  # we just extract it from existing confusion
                    update_sensitivity=True),
                normal_feature_dataset(perlabel=28,
                                       nchunks=7,
                                       nfeatures=200,
                                       nonbogus_features=[0, 1],
                                       snr=1.5))
        ]:
            # prep data
            # data = datasets['uni2medium']
            data_nfeatures = data.nfeatures

            rfe.train(data)
            resds = rfe(data)

            # fail if orig datasets are changed
            self.assertTrue(data.nfeatures == data_nfeatures)

            # check that the features set with the least error is selected
            if len(rfe.ca.errors):
                e = np.array(rfe.ca.errors)
                if isinstance(rfe._fselector, FixedNElementTailSelector):
                    self.assertTrue(resds.nfeatures == data_nfeatures -
                                    e.argmin())
                else:
                    imin = np.argmin(e)
                    if 'does_feature_selection' in clf.__tags__:
                        # if clf is smart it might figure it out right away
                        assert_array_less(imin, len(e))
                    else:
                        # in this case we can even check if we had actual
                        # going down/up trend... although -- why up???
                        self.assertTrue(1 < imin < len(e) - 1)
            else:
                self.assertTrue(resds.nfeatures == data_nfeatures)

            # silly check if nfeatures is in decreasing order
            nfeatures = np.array(rfe.ca.nfeatures).copy()
            nfeatures.sort()
            self.assertTrue((nfeatures[::-1] == rfe.ca.nfeatures).all())

            # check if history has elements for every step
            self.assertTrue(
                set(rfe.ca.history) == set(range(len(np.array(
                    rfe.ca.errors)))))

            # Last (the largest number) can be present multiple times even
            # if we remove 1 feature at a time -- just need to stop well
            # in advance when we have more than 1 feature left ;)
            self.assertTrue(rfe.ca.nfeatures[-1] == len(
                np.where(rfe.ca.history == max(rfe.ca.history))[0]))
Exemplo n.º 12
0
    def test_rfe(self, clf):

        # sensitivity analyser and transfer error quantifier use the SAME clf!
        sens_ana = clf.get_sensitivity_analyzer(postproc=maxofabs_sample())
        pmeasure = ProxyMeasure(clf, postproc=BinaryFxNode(mean_mismatch_error,
                                                           'targets'))
        cvmeasure = CrossValidation(clf, NFoldPartitioner(),
                                    errorfx=mean_mismatch_error,
                                    postproc=mean_sample())

        rfesvm_split = SplitClassifier(clf, OddEvenPartitioner())

        # explore few recipes
        for rfe, data in [
            # because the clf is already trained when computing the sensitivity
            # map, prevent retraining for transfer error calculation
            # Use absolute of the svm weights as sensitivity
            (RFE(sens_ana,
                pmeasure,
                Splitter('train'),
                fselector=FixedNElementTailSelector(1),
                train_pmeasure=False),
             self.get_data()),
            # use cross-validation within training to get error for the stopping point
            # but use full training data to derive sensitivity
            (RFE(sens_ana,
                 cvmeasure,
                 Repeater(2),            # give the same full dataset to sens_ana and cvmeasure
                 fselector=FractionTailSelector(
                     0.70,
                     mode='select', tail='upper'),
                train_pmeasure=True),
             normal_feature_dataset(perlabel=20, nchunks=5, nfeatures=200,
                                    nonbogus_features=[0, 1], snr=1.5)),
            # use cross-validation (via SplitClassifier) and get mean
            # of normed sensitivities across those splits
            (RFE(rfesvm_split.get_sensitivity_analyzer(
                    postproc=ChainMapper([ FxMapper('features', l2_normed),
                                           FxMapper('samples', np.mean),
                                           FxMapper('samples', np.abs)])),
                 ConfusionBasedError(rfesvm_split, confusion_state='stats'),
                 Repeater(2),             #  we will use the same full cv-training dataset
                 fselector=FractionTailSelector(
                     0.50,
                     mode='select', tail='upper'),
                 stopping_criterion=NBackHistoryStopCrit(BestDetector(), 10),
                 train_pmeasure=False,    # we just extract it from existing confusion
                 update_sensitivity=True),
             normal_feature_dataset(perlabel=28, nchunks=7, nfeatures=200,
                                    nonbogus_features=[0, 1], snr=1.5))
            ]:
            # prep data
            # data = datasets['uni2medium']
            data_nfeatures = data.nfeatures

            rfe.train(data)
            resds = rfe(data)

            # fail if orig datasets are changed
            self.assertTrue(data.nfeatures == data_nfeatures)

            # check that the features set with the least error is selected
            if len(rfe.ca.errors):
                e = np.array(rfe.ca.errors)
                if isinstance(rfe._fselector, FixedNElementTailSelector):
                    self.assertTrue(resds.nfeatures == data_nfeatures - e.argmin())
                else:
                    imin = np.argmin(e)
                    if 'does_feature_selection' in clf.__tags__:
                        # if clf is smart it might figure it out right away
                        assert_array_less( imin, len(e) )
                    else:
                        # in this case we can even check if we had actual
                        # going down/up trend... although -- why up???
                        self.assertTrue( 1 < imin < len(e) - 1 )
            else:
                self.assertTrue(resds.nfeatures == data_nfeatures)

            # silly check if nfeatures is in decreasing order
            nfeatures = np.array(rfe.ca.nfeatures).copy()
            nfeatures.sort()
            self.assertTrue( (nfeatures[::-1] == rfe.ca.nfeatures).all() )

            # check if history has elements for every step
            self.assertTrue(set(rfe.ca.history)
                            == set(range(len(np.array(rfe.ca.errors)))))

            # Last (the largest number) can be present multiple times even
            # if we remove 1 feature at a time -- just need to stop well
            # in advance when we have more than 1 feature left ;)
            self.assertTrue(rfe.ca.nfeatures[-1]
                            == len(np.where(rfe.ca.history
                                           ==max(rfe.ca.history))[0]))
Exemplo n.º 13
0
    def test_analyzer_with_split_classifier(self, clfds):
        """Test analyzers in split classifier
        """
        clf, ds = clfds             # unroll the tuple
        # We need to skip some LARSes here
        _sclf = str(clf)
        if 'LARS(' in _sclf and "type='stepwise'" in _sclf:
            # ADD KnownToFail thingie from NiPy
            return

        # To don't waste too much time testing lets limit to 3 splits
        nsplits = 3
        partitioner = NFoldPartitioner(count=nsplits)
        mclf = SplitClassifier(clf=clf,
                               partitioner=partitioner,
                               enable_ca=['training_stats',
                                              'stats'])
        sana = mclf.get_sensitivity_analyzer(# postproc=absolute_features(),
                                           pass_attr=['fa.nonbogus_targets'],
                                           enable_ca=["sensitivities"])

        ulabels = ds.uniquetargets
        nlabels = len(ulabels)
        # Can't rely on splitcfg since count-limit is done in __call__
        assert(nsplits == len(list(partitioner.generate(ds))))
        sens = sana(ds)
        assert('nonbogus_targets' in sens.fa) # were they passsed?
        # TODO: those few do not expose biases
        if not len(set(clf.__tags__).intersection(('lars', 'glmnet', 'gpr'))):
            assert('biases' in sens.sa)
            # print sens.sa.biases
        # It should return either ...
        #  nlabels * nsplits
        req_nsamples = [ nlabels * nsplits ]
        if nlabels == 2:
            # A single sensitivity in case of binary
            req_nsamples += [ nsplits ]
        else:
            # and for pairs in case of multiclass
            req_nsamples += [ (nlabels * (nlabels - 1) / 2) * nsplits ]
            # and for 1-vs-1 embedded within Multiclass operating on
            # pairs (e.g. SMLR)
            req_nsamples += [req_nsamples[-1] * 2]

            # Also for regression_based -- they can do multiclass
            # but only 1 sensitivity is provided
            if 'regression_based' in clf.__tags__:
                req_nsamples += [ nsplits ]

        # # of features should correspond
        self.assertEqual(sens.shape[1], ds.nfeatures)
        # # of samples/sensitivities should also be reasonable
        self.assertTrue(sens.shape[0] in req_nsamples)

        # Check if labels are present
        self.assertTrue('splits' in sens.sa)
        self.assertTrue('targets' in sens.sa)
        # should be 1D -- otherwise dtype object
        self.assertTrue(sens.sa.targets.ndim == 1)

        sens_ulabels = sens.sa['targets'].unique
        # Some labels might be pairs(tuples) so ndarray would be of
        # dtype object and we would need to get them all
        if sens_ulabels.dtype is np.dtype('object'):
            sens_ulabels = np.unique(
                reduce(lambda x, y: x + y, [list(x) for x in sens_ulabels]))

        assert_array_equal(sens_ulabels, ds.sa['targets'].unique)

        errors = [x.percent_correct
                    for x in sana.clf.ca.stats.matrices]

        # lets go through all sensitivities and see if we selected the right
        # features
        #if 'meta' in clf.__tags__ and len(sens.samples[0].nonzero()[0])<2:
        if '5%' in clf.descr \
               or (nlabels > 2 and 'regression_based' in clf.__tags__):
            # Some meta classifiers (5% of ANOVA) are too harsh ;-)
            # if we get less than 2 features with on-zero sensitivities we
            # cannot really test
            # Also -- regression based classifiers performance for multiclass
            # is expected to suck in general
            return

        if cfg.getboolean('tests', 'labile', default='yes'):
            for conf_matrix in [sana.clf.ca.training_stats] \
                              + sana.clf.ca.stats.matrices:
                self.assertTrue(
                    conf_matrix.percent_correct >= 70,
                    msg="We must have trained on each one more or " \
                    "less correctly. Got %f%% correct on %d labels" %
                    (conf_matrix.percent_correct,
                     nlabels))


        # Since  now we have per split and possibly per label -- lets just find
        # mean per each feature per label across splits
        sensm = FxMapper('samples', lambda x: np.sum(x),
                         uattrs=['targets']).forward(sens)
        sensgm = maxofabs_sample().forward(sensm)    # global max of abs of means

        assert_equal(sensgm.shape[0], 1)
        assert_equal(sensgm.shape[1], ds.nfeatures)

        selected = FixedNElementTailSelector(
            len(ds.a.bogus_features))(sensgm.samples[0])

        if cfg.getboolean('tests', 'labile', default='yes'):

            self.assertEqual(
                set(selected), set(ds.a.nonbogus_features),
                msg="At the end we should have selected the right features. "
                "Chose %s whenever nonbogus are %s"
                % (selected, ds.a.nonbogus_features))

            # Now test each one per label
            # TODO: collect all failures and spit them out at once --
            #       that would make it easy to see if the sensitivity
            #       just has incorrect order of labels assigned
            for sens1 in sensm:
                labels1 = sens1.targets  # labels (1) for this sensitivity
                lndim = labels1.ndim
                label = labels1[0]      # current label

                # XXX whole lndim comparison should be gone after
                #     things get fixed and we arrive here with a tuple!
                if lndim == 1: # just a single label
                    self.assertTrue(label in ulabels)

                    ilabel_all = np.where(ds.fa.nonbogus_targets == label)[0]
                    # should have just 1 feature for the label
                    self.assertEqual(len(ilabel_all), 1)
                    ilabel = ilabel_all[0]

                    maxsensi = np.argmax(sens1) # index of max sensitivity
                    self.assertEqual(maxsensi, ilabel,
                        "Maximal sensitivity for %s was found in %i whenever"
                        " original feature was %i for nonbogus features %s"
                        % (labels1, maxsensi, ilabel, ds.a.nonbogus_features))
                elif lndim == 2 and labels1.shape[1] == 2: # pair of labels
                    # we should have highest (in abs) coefficients in
                    # those two labels
                    maxsensi2 = np.argsort(np.abs(sens1))[0][-2:]
                    ilabel2 = [np.where(ds.fa.nonbogus_targets == l)[0][0]
                                    for l in label]
                    self.assertEqual(
                        set(maxsensi2), set(ilabel2),
                        "Maximal sensitivity for %s was found in %s whenever"
                        " original features were %s for nonbogus features %s"
                        % (labels1, maxsensi2, ilabel2, ds.a.nonbogus_features))
                    """
                    # Now test for the sign of each one in pair ;) in
                    # all binary problems L1 (-1) -> L2(+1), then
                    # weights for L2 should be positive.  to test for
                    # L1 -- invert the sign
                    # We already know (if we haven't failed in previous test),
                    # that those 2 were the strongest -- so check only signs
                    """
                    self.assertTrue(
                        sens1.samples[0, ilabel2[0]] < 0,
                        "With %i classes in pair %s got feature %i for %r >= 0"
                        % (nlabels, label, ilabel2[0], label[0]))
                    self.assertTrue(sens1.samples[0, ilabel2[1]] > 0,
                        "With %i classes in pair %s got feature %i for %r <= 0"
                        % (nlabels, label, ilabel2[1], label[1]))
                else:
                    # yoh could be wrong at this assumption... time will show
                    self.fail("Got unknown number labels per sensitivity: %s."
                              " Should be either a single label or a pair"
                              % labels1)