Exemplo n.º 1
0
def preprocess_and_tmp_save_fmri(data_path,
                                 task,
                                 subj,
                                 model,
                                 tmp_path,
                                 group_mask=None):
    '''
    Generator for preprocessed fMRI runs from  one subject of Forrest Gump
    aligns to group template
    run-wise linear de-trending and z-scoring
    IN:
        data_path    -   string, path pointing to the Forrest Gump directory
        task        -   string, which part of the Forrest Gump dataset to load
        subj        -   int, subject to pre-process
        tmp_path    -   string, path to save the dataset temporarily to
    OUT:
        preprocessed fMRI samples per run'''
    from nipype.interfaces import fsl
    dhandle = mvpa.OpenFMRIDataset(data_path)

    flavor = 'dico_bold7Tp1_to_subjbold7Tp1'
    if group_mask is None:
        group_mask = os.path.join(data_path, 'sub{0:03d}'.format(subj),
                                  'templates', 'bold7Tp1', 'in_grpbold7Tp1',
                                  'brain_mask.nii.gz')
    mask_fname = os.path.join(data_path, 'sub{0:03d}'.format(subj),
                              'templates', 'bold7Tp1', 'brain_mask.nii.gz')
    for run_id in dhandle.get_task_bold_run_ids(task)[subj]:
        run_ds = dhandle.get_bold_run_dataset(subj,
                                              task,
                                              run_id,
                                              chunks=run_id - 1,
                                              mask=mask_fname,
                                              flavor=flavor)
        filename = 'brain_subj_{}_run_{}.nii.gz'.format(subj, run_id)
        tmp_file = os.path.join(tmp_path, filename)
        save(unmask(run_ds.samples.astype('float32'), mask_fname), tmp_file)
        warp = fsl.ApplyWarp()
        warp.inputs.in_file = tmp_file
        warp.inputs.out_file = os.path.join(tmp_path, 'group_' + filename)
        warp.inputs.ref_file = os.path.join(data_path, 'templates',
                                            'grpbold7Tp1', 'brain.nii.gz')
        warp.inputs.field_file = os.path.join(data_path,
                                              'sub{0:03d}'.format(subj),
                                              'templates', 'bold7Tp1',
                                              'in_grpbold7Tp1',
                                              'subj2tmpl_warp.nii.gz')
        warp.inputs.interp = 'nn'
        warp.run()
        os.remove(tmp_file)
        run_ds = mvpa.fmri_dataset(os.path.join(tmp_path, 'group_' + filename),
                                   mask=group_mask,
                                   chunks=run_id - 1)
        mvpa.poly_detrend(run_ds, polyord=1)
        mvpa.zscore(run_ds)
        os.remove(os.path.join(tmp_path, 'group_' + filename))
        yield run_ds.samples.astype('float32')
def tmp_save_fmri(datapath, task, subj, model):
    dhandle = mvpa.OpenFMRIDataset(datapath)
    #mask_fname = os.path.join('/home','mboos','SpeechEncoding','temporal_lobe_mask_brain_subj' + str(subj) + 'bold.nii.gz')

    flavor = 'dico_bold7Tp1_to_subjbold7Tp1'
    group_brain_mask = '/home/mboos/SpeechEncoding/brainmask_group_template.nii.gz'
    mask_fname = os.path.join(datapath, 'sub{0:03d}'.format(subj), 'templates', 'bold7Tp1', 'brain_mask.nii.gz')
    #mask_fname = '/home/mboos/SpeechEncoding/masks/epi_subj_{}.nii.gz'.format(subj)
    scratch_path = '/home/data/scratch/mboos/prepro/tmp/'
    for run_id in dhandle.get_task_bold_run_ids(task)[subj]:
        run_ds = dhandle.get_bold_run_dataset(subj,task,run_id,chunks=run_id-1,mask=mask_fname,flavor=flavor)
        filename = 'whole_brain_subj_{}_run_{}.nii.gz'.format(subj, run_id)
        tmp_path = scratch_path + filename
        save(unmask(run_ds.samples.astype('float32'), mask_fname), tmp_path)
        os.system('applywarp -i {0} -o {1} -r /home/data/psyinf/forrest_gump/anondata/templates/grpbold7Tp1/brain.nii.gz -w /home/data/psyinf/forrest_gump/anondata/sub{2:03}/templates/bold7Tp1/in_grpbold7Tp1/subj2tmpl_warp.nii.gz --interp=nn'.format(tmp_path, scratch_path+'group_'+filename,subj))
        os.remove(tmp_path)
        run_ds = mvpa.fmri_dataset(scratch_path+'group_'+filename, mask=group_brain_mask, chunks=run_id-1)
        mvpa.poly_detrend(run_ds, polyord=1)
        mvpa.zscore(run_ds)
        joblib.dump(run_ds.samples.astype('float32'),
                    '/home/data/scratch/mboos/prepro/tmp/whole_brain_subj_{}_run_{}.pkl'.format(subj, run_id))
        os.remove(scratch_path+'group_'+filename)
    return run_ds.samples.shape[1]
			targets=volAttribrutes.targets, # I think this was "labels" in versions 0.4.*
			chunks=volAttribrutes.chunks,
			mask=os.path.join(sessionPath,'analyze/structural/lc2ms_deskulled.hdr'))

		# DATASET ATTRIBUTES (see AttrDataset)
		print 'functional input has',dataset.a.voxel_dim,'voxels of dimesions',dataset.a.voxel_eldim,'mm'
		print '... or',N.product(dataset.a.voxel_dim),'voxels per volume'
		print 'masked data has',dataset.shape[1],'voxels in each of',dataset.shape[0],'volumes'
		print '... which means that',round(100-100*dataset.shape[1]/N.product(dataset.a.voxel_dim)),'% of the voxels were masked out'
		print 'of',dataset.shape[1],'remaining features ...'
		print 'summary of conditions/volumes\n',datetime.datetime.now()
		print dataset.summary_targets()

		# DETREND
		print 'detrending (remove slow drifts in signal, and jumps between runs) ...',datetime.datetime.now() # can be very memory intensive!
		M.poly_detrend(dataset, polyord=1, chunks_attr='chunks') # linear detrend
		print '... done',datetime.datetime.now()

		# ZSCORE
		print 'zscore normalising (give all voxels similar variance) ...',datetime.datetime.now()
		M.zscore(dataset, chunks_attr='chunks', param_est=('targets', ['base'])) # zscoring, on basis of rest periods
		print '... done',datetime.datetime.now()
		#P.savefig(os.path.join(sessionPath,'pyMVPAimportDetrendZscore.png'))

		pickleFile = gzip.open(preprocessedCache, 'wb', 5);
		pickle.dump(dataset, pickleFile);

	# AVERAGE OVER MULTIPLE VOLUMES IN A SINGLE TRIAL
	print 'averaging over trials ...',datetime.datetime.now()
	dataset = dataset.get_mapped(M.mean_group_sample(attrs=['chunks','targets']))
	print '... only',dataset.shape[0],'cases left now'
Exemplo n.º 4
0
        # DATASET ATTRIBUTES (see AttrDataset)
        print 'functional input has', dataset.a.voxel_dim, 'voxels of dimesions', dataset.a.voxel_eldim, 'mm'
        print '... or', N.product(dataset.a.voxel_dim), 'voxels per volume'
        print 'masked data has', dataset.shape[
            1], 'voxels in each of', dataset.shape[0], 'volumes'
        print '... which means that', round(
            100 - 100 * dataset.shape[1] /
            N.product(dataset.a.voxel_dim)), '% of the voxels were masked out'
        print 'of', dataset.shape[1], 'remaining features ...'
        print 'summary of conditions/volumes\n', datetime.datetime.now()
        print dataset.summary_targets()

        # DETREND
        print 'detrending (remove slow drifts in signal, and jumps between runs) ...', datetime.datetime.now(
        )  # can be very memory intensive!
        M.poly_detrend(dataset, polyord=1,
                       chunks_attr='chunks')  # linear detrend
        print '... done', datetime.datetime.now()

        # ZSCORE
        print 'zscore normalising (give all voxels similar variance) ...', datetime.datetime.now(
        )
        M.zscore(dataset,
                 chunks_attr='chunks',
                 param_est=('targets',
                            ['base']))  # zscoring, on basis of rest periods
        print '... done', datetime.datetime.now()
        #P.savefig(os.path.join(sessionPath,'pyMVPAimportDetrendZscore.png'))

        pickleFile = gzip.open(preprocessedCache, 'wb', 5)
        pickle.dump(dataset, pickleFile)
Exemplo n.º 5
0
K_FEATS = 1000 if MASK == 'vtc' else 500

featsel = SelectKBest(f_classif, k=K_FEATS)
clf = LogisticRegression(penalty='l2', multi_class='ovr', solver='liblinear')

#################
##  LOAD DATA  ##
#################

map_ds_dict, mem_ds_dict = load_data(MASK)

# preprocess
for d in [mem_ds_dict, map_ds_dict]:
    for ds in d.values():
        mvpa2.remove_invariant_features(ds)
        mvpa2.poly_detrend(ds, polyord=1, chunks_attr='chunks')
        mvpa2.zscore(ds, chunks_attr='chunks')

##############################################################
##  build and convert to common space using hyperalignment  ##
##############################################################

# select features based on localizer data
fsel_masks = [
    featsel.fit(ds.samples, ds.targets).get_support()
    for ds in map_ds_dict.values()
]
# apply feature selection to all data (localizer and memory)
fs_mapds_list = [
    ds[:, mask] for ds, mask in zip(map_ds_dict.values(), fsel_masks)
]
Exemplo n.º 6
0
             '*_task-avmovie_run-*highpass_tmpl.nii.gz'))
    mask_fn = base_dir + participant + anat_dir + 'brain_mask_tmpl.nii.gz'
    assert len(movie_fns) == 8

    # Include chunk (i.e., run) labels
    movie_ds = mv.vstack([
        mv.fmri_dataset(movie_fn, mask=mask_fn, chunks=run)
        for run, movie_fn in enumerate(movie_fns)
    ])

    # Assign participant labels as feature attribute
    movie_ds.fa['participant'] = [participant] * movie_ds.shape[1]
    print("Loaded movie data for participant {0}".format(participant))

    # Perform linear detrending per chunk
    mv.poly_detrend(movie_ds, polyord=polyord, chunks_attr='chunks')

    # Perform low-pass filtering per chunk
    movie_ds.samples = clean(movie_ds.samples,
                             sessions=movie_ds.sa.chunks,
                             low_pass=.1,
                             high_pass=None,
                             t_r=2.0,
                             detrend=False,
                             standardize=False)

    # Z-score movie time series per chunk
    mv.zscore(movie_ds, chunks_attr='chunks')
    print("Finished preprocessing (detrending, z-scoring) for participant {0}".
          format(participant))
Exemplo n.º 7
0
	if i==0:
		ds = ds[:-4]
	elif i<7:
		ds = ds[4:-4]
	else:
		ds = ds[4:]
	ds.sa['chunks'] = np.ones(ds.nsamples)*i
	print ds.shape
	Ds.append(ds)
	
ds = mvpa.vstack(Ds)
ds.samples = ds.samples.astype('float32')

#Detrending and MC removal
mvpa.poly_detrend(ds,
		  opt_regs=['mc_'+param  for param in mc],
		  chunks_attr='chunks'
		  )
		  
#Voxelwise Zscore
if zsc:
	mvpa.zscore(ds)

#bandpass filter
nf = 0.5/TR
ws = [(1/lf)/nf, (1/hf)/nf]
b, a = signal.butter(5, ws, btype='band')
S = [signal.filtfilt(b, a, x) for x in ds.samples.T]
ds.samples = np.array(S).T
ds.samples = ds.samples.astype('float32')

#Create Event-related Dataset
Exemplo n.º 8
0
#mask_fname = os.path.join('/home','mboos','SpeechEncoding','temporal_lobe_mask_brain_subj' + str(subj) + 'bold.nii.gz')

#get openFMRI dataset handle
dhandle = mvpa.OpenFMRIDataset(datapath)
model = 1
task = 1

T3 = False
#get openFMRI dataset handle
dhandle = mvpa.OpenFMRIDataset(datapath)
model = 1
task = 1

datapath = os.path.join('/home','data','psyinf','forrest_gump','anondata')
#boldlist = sorted(glob.glob(os.path.join(datapath,'task002*')))
flavor = 'dico_bold7Tp1_to_subjbold7Tp1'

for subj in xrange(1,20):
    mask_fname = os.path.join('/home','mboos','SpeechEncoding','temporal_lobe_mask_brain_subj%02dbold.nii.gz' % subj)

    #load and save all datasets
    run_datasets = []
    for run_id in dhandle.get_task_bold_run_ids(task)[subj]:
        run_ds = dhandle.get_bold_run_dataset(subj,task,run_id,chunks=run_id-1,mask=mask_fname,flavor=flavor)
        run_datasets.append(run_ds)
    s1ds = mvpa.vstack(run_datasets)
    mvpa.poly_detrend(s1ds,polyord=1,chunks_attr='chunks')
    mvpa.zscore(s1ds)
    s1ds.save(os.path.join('/home','mboos','SpeechEncoding','PreProcessed','FG_subj' + str(subj) + 'pp.gzipped.hdf5'),compression=9)

Exemplo n.º 9
0
def preprocess_dataset(ds, type_, **kwargs):
    """
    Preprocess the dataset: detrending of single run and for chunks, the zscoring is also
    done by chunks and by run.
    
    Parameters
    ----------
    ds : Dataset
        The dataset to be preprocessed
    type : string
        The experiment to be processed
    kwargs : dict
        mean_samples - boolean : if samples should be averaged
        label_included - list : list of labels to be included in the dataset
        label_dropped - string : label to be dropped (rest, fixation)
        
    Returns
    -------
    Dataset
        the processed dataset
    
    
    """
    mean = False
    normalization = 'feature'
    for arg in kwargs:
        if (arg == 'mean_samples'):
            mean = kwargs[arg]
        if (arg == 'label_included'):
            label_included = kwargs[arg].split(',')
        if (arg == 'label_dropped'):
            label_dropped = kwargs[arg] 
        if (arg == 'img_dim'):
            img_dim = int(kwargs[arg])
        if (arg == 'normalization'):
            normalization = str(kwargs[arg])
                
    
    logger.info('Dataset preprocessing: Detrending...')
    if len(np.unique(ds.sa['file'])) != 1:
        poly_detrend(ds, polyord = 1, chunks_attr = 'file')
    poly_detrend(ds, polyord = 1, chunks_attr = 'chunks')
    
    
    if  label_dropped != 'None':
        logger.info('Removing labels...')
        ds = ds[ds.sa.targets != label_dropped]
    if  label_included != ['all']:
        ds = ds[np.array([l in label_included for l in ds.sa.targets],
                          dtype='bool')]
        
               
    if str(mean) == 'True':
        logger.info('Dataset preprocessing: Averaging samples...')
        avg_mapper = mean_group_sample(['event_num']) 
        ds = ds.get_mapped(avg_mapper)     
    
    
    if normalization == 'feature' or normalization == 'both':
        logger.info('Dataset preprocessing: Normalization feature-wise...')
        if img_dim == 4:
            zscore(ds, chunks_attr='file')
        zscore(ds)#, param_est=('targets', ['fixation']))
    
    if normalization == 'sample' or normalization == 'both':
        #Normalizing image-wise
        logger.info('Dataset preprocessing: Normalization sample-wise...')
        ds.samples -= np.mean(ds, axis=1)[:, None]
        ds.samples /= np.std(ds, axis=1)[:, None]
        
        ds.samples[np.isnan(ds.samples)] = 0
    
    
    ds.a.events = find_events(#event= ds.sa.event_num, 
                              chunks = ds.sa.chunks, 
                              targets = ds.sa.targets)
    
    return ds
Exemplo n.º 10
0
    if i == 0:
        ds = ds[:-4]
    elif i < 7:
        ds = ds[4:-4]
    else:
        ds = ds[4:]
    ds.sa['chunks'] = np.ones(ds.nsamples) * i
    print ds.shape
    Ds.append(ds)

ds = mvpa.vstack(Ds)
ds.samples = ds.samples.astype('float32')

#Detrending and MC removal
mvpa.poly_detrend(ds,
                  opt_regs=['mc_' + param for param in mc],
                  chunks_attr='chunks')

#Voxelwise Zscore
if zsc:
    mvpa.zscore(ds)

#bandpass filter
nf = 0.5 / TR
ws = [(1 / lf) / nf, (1 / hf) / nf]
b, a = signal.butter(5, ws, btype='band')
S = [signal.filtfilt(b, a, x) for x in ds.samples.T]
ds.samples = np.array(S).T
ds.samples = ds.samples.astype('float32')

#Create Event-related Dataset