def next_func(data_queue, event):
     while True:
         if event.is_set():
             batch, label = data_queue.get(block=True)
             batch = dataloader._as_in_context(batch, context.cpu())
             label = dataloader._as_in_context(label, context.cpu())
             label = label.reshape((label.shape[0], ))
             self._data_buffer.put((batch, label))
Exemplo n.º 2
0
 def _same_process_iter():
     for batch in self._batch_sampler:
         if isinstance(batch[0], (list, tuple)):
             rets = [self._batchify_fn([self._dataset[idx] for idx in shard])
                     for shard in batch]
             if self._pin_memory:
                 rets = [_as_in_context(ret, context.cpu_pinned()) for ret in rets]
             yield rets
         else:
             ret = self._batchify_fn([self._dataset[idx] for idx in batch])
             if self._pin_memory:
                 ret = _as_in_context(ret, context.cpu_pinned())
             yield ret
Exemplo n.º 3
0
 def same_process_iter():
     for batch in self._batch_sampler:
         ret = self._batchify_fn(
             [self._dataset[idx] for idx in batch])
         if self._pin_memory:
             ret = _as_in_context(
                 ret, context.cpu_pinned(self._pin_device_id))
         yield ret
Exemplo n.º 4
0
 def _same_process_iter():
     for batch in self._batch_sampler:
         if isinstance(batch[0], (list, tuple)):
             rets = [
                 self._batchify_fn(
                     [self._dataset[idx] for idx in shard])
                 for shard in batch
             ]
             if self._pin_memory:
                 rets = [
                     _as_in_context(ret, context.cpu_pinned())
                     for ret in rets
                 ]
             yield rets
         else:
             ret = self._batchify_fn(
                 [self._dataset[idx] for idx in batch])
             if self._pin_memory:
                 ret = _as_in_context(ret, context.cpu_pinned())
             yield ret
Exemplo n.º 5
0
    def __next__(self):
        self._push_next()
        if self._rcvd_idx == self._sent_idx:
            assert not self._data_buffer, 'Data buffer should be empty at this moment'
            raise StopIteration

        assert self._rcvd_idx < self._sent_idx, 'rcvd_idx must be smaller than sent_idx'
        assert self._rcvd_idx in self._data_buffer, 'fatal error with _push_next, rcvd_idx missing'
        ret = self._data_buffer.pop(self._rcvd_idx)
        batch = pickle.loads(ret.get()) if self._dataset is None else ret.get()
        if self._pin_memory:
            batch = _as_in_context(batch, context.cpu_pinned())
        self._rcvd_idx += 1
        return batch
Exemplo n.º 6
0
 def _same_process_iter():
     urls = []
     dataset = [self._dataset[i] for i in iter(self._file_sampler)]
     for i, url in enumerate(dataset):
         urls.append(url)
         if i < len(dataset) - 1:
             if len(urls) < self._circle_length:
                 continue
         if self._circle_length == 1:
             urls = urls[0]
         dataset, batch_sampler = _dataset_worker_fn(urls, self._dataset_fn,
                                                     self._batch_sampler_fn)
         for batch in batch_sampler:
             ret = self._batchify_fn([dataset[idx] for idx in batch])
             if self._pin_memory:
                 ret = _as_in_context(ret, context.cpu_pinned())
             yield ret
         urls = []
Exemplo n.º 7
0
    def __next__(self):
        self._iters += 1
        if not self._sample_times or self._iters < self._sample_times:
            self._push_next()
        if self._rcvd_idx == self._sent_idx:
            assert not self._data_buffer, "Data buffer should be empty at this moment"
            raise StopIteration

        assert self._rcvd_idx < self._sent_idx, "rcvd_idx must be smaller than sent_idx"
        assert self._rcvd_idx in self._data_buffer, "fatal error with _push_next, rcvd_idx missing"
        ret = self._data_buffer.pop(self._rcvd_idx)
        try:
            if self._dataset is None:
                batch = pickle.loads(ret.get(self._timeout))
            else:
                batch = ret.get(self._timeout)
            if self._pin_memory:
                batch = _as_in_context(batch,
                                       context.cpu_pinned(self._pin_device_id))
            batch = batch[0] if len(batch) == 1 else batch
            self._rcvd_idx += 1
            return batch
        except multiprocessing.context.TimeoutError:
            msg = '''Worker timed out after {} seconds. This might be caused by \n
            - Slow transform. Please increase timeout to allow slower data loading in each worker.
            '''.format(self._timeout)
            if not isinstance(self._worker_pool,
                              multiprocessing.pool.ThreadPool):
                msg += '''- Insufficient shared_memory if `timeout` is large enough.
            Please consider reduce `num_workers` or increase shared_memory in system.
            '''
            print(msg)
            raise
        except Exception:
            self._worker_pool.terminate()
            raise