Exemplo n.º 1
0
    def forward(self, rcnn_cls_pred, rcnn_bbox_pred, rcnn_cls_gt,
                rcnn_bbox_gt):
        with autograd.pause():
            ctx = rcnn_cls_pred.context
            roi_num = rcnn_cls_pred.shape[0]
            roi_idx = nd.arange(roi_num, ctx=ctx).reshape(-1, 1)
            fg_bbox_mask = (rcnn_cls_gt > 0).reshape(0, 1, 1)
            bbox_weights = nd.zeros_like(rcnn_bbox_gt).reshape(0, -1, 4)
            bbox_weights[roi_idx, rcnn_cls_gt[:], :] = \
                self._bbox_weights.data(ctx).broadcast_to((roi_num, 1, 4)) * fg_bbox_mask
            bbox_weights = bbox_weights.reshape(0, -1)

        # rcnn_cls_pred.shape (roi_num, num_classes)
        rcnn_cls_log = nd.log(nd.clip(rcnn_cls_pred, 1e-14, 1))
        cls_log_loss = -nd.sum(rcnn_cls_log[
            roi_idx, rcnn_cls_gt]) / self._roi_batch_size.data(ctx)

        # rcnn_bbox_pred.shape (roi_num, num_classes*4)
        rcnn_bbox_smooth_l1 = nd.smooth_l1(rcnn_bbox_pred - rcnn_bbox_gt,
                                           scalar=1.0)
        bbox_smooth_l1_loss = nd.sum(
            rcnn_bbox_smooth_l1 *
            bbox_weights) / self._roi_batch_size.data(ctx)

        return cls_log_loss, bbox_smooth_l1_loss
Exemplo n.º 2
0
    def updata(self, labels, preds):
        rcnn_bbox_taregt, rcnn_bbox_weight = labels
        rcnn_bbox_reg = preds[0]

        num_inst = nd.sum(rcnn_bbox_weight) / 4

        loss = nd.sum(rcnn_bbox_weight * nd.smooth_l1(rcnn_bbox_reg-rcnn_bbox_taregt, scalar=1))

        self.sum_metric += loss.asscalar()
        self.num_inst += num_inst.asscalar()
Exemplo n.º 3
0
    def update(self, labels, preds):
        rpn_bbox_target, rpn_bbox_weight = labels
        rpn_bbox_reg = preds[0]

        num_inst = nd.sum(rpn_bbox_weight) / 4

        loss = nd.sum(rpn_bbox_weight * nd.smooth_l1(rpn_bbox_reg-rpn_bbox_target, scalar=3))

        self.sum_metric += loss.asscalar()
        self.num_inst += num_inst.asscalar()
    def update(self, labels, preds):
        """Updates the internal evaluation result.

        Parameters
        ----------
        labels : list of `NDArray`   [rcnn_box_target,rcnn_box_weight]
            The labels of the data.

        preds : list of `NDArray`   [rcnn_box_reg]
            Predicted values.
        """
        rcnn_box_target, rcnn_box_weight = labels
        rcnn_box_reg = preds[0]

        num_inst = nd.sum(rcnn_box_weight) / 4

        self.sum_metric += (nd.smooth_l1(rcnn_box_reg - rcnn_box_target, scalar=1) * rcnn_box_weight).sum().asscalar()
        self.num_inst += num_inst.asscalar()
Exemplo n.º 5
0
    def forward(self, rpn_cls_pred, rpn_bbox_pred, rpn_cls_gt, rpn_bbox_gt):
        with autograd.pause():
            ctx = rpn_cls_pred.context
            batch_size = rpn_cls_pred.shape[0]
            # construct cls_mask to ignore label=-1
            cls_mask = nd.stack(rpn_cls_gt == 0, rpn_cls_gt == 1, axis=1)
            bbox_weights = (rpn_cls_gt == 1).reshape(
                batch_size, 1, -1) * self._bbox_weights.data(ctx)

        # reshape -> (batch_size, 2, num_anchors*feat_h*feat_w)
        rpn_cls_log = nd.log(
            nd.clip(rpn_cls_pred.reshape((batch_size, 2, -1)), 1e-14, 1))
        cls_log_loss = -nd.sum(
            rpn_cls_log * cls_mask) / self._rpn_batch_size.data(ctx)

        # reshape -> (batch_size, 4, num_anchors*feat_h*feat_w)
        rpn_bbox_smooth_l1 = nd.smooth_l1(rpn_bbox_pred.reshape(
            (batch_size, 4, -1)) - rpn_bbox_gt,
                                          scalar=3.0)
        bbox_smooth_l1_loss = nd.sum(
            rpn_bbox_smooth_l1 * bbox_weights) / self._rpn_batch_size.data(ctx)

        return cls_log_loss, bbox_smooth_l1_loss
Exemplo n.º 6
0
            continue
        h, w = img.shape[0:2]
        bbox = [row[2:6] * nd.array((w, h, w, h), ctx=row.context)]
        d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')


display(img, output, threshold=0.3)

#损失函数
#平滑L1范数损失
sigmas = [10, 1, 0.5]
lines = ['-', '--', '-.']
x = nd.arange(-2, 2, 0.1)
d2l.set_figsize()
for l, s in zip(lines, sigmas):
    y = nd.smooth_l1(x, scalar=s)
    d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)
d2l.plt.legend()


#焦点损失
def focal_loss(gamma, x):
    return -(1 - x)**gamma * x.log()


x = nd.arange(0.01, 1, 0.01)
for l, gamma in zip(lines, [0, 1, 5]):
    y = d2l.plt.plot(x.asnumpy(),
                     focal_loss(gamma, x).asnumpy(),
                     l,
                     label='gamma=%.1f' % gamma)
Exemplo n.º 7
0
def compute_res_loss(output, target, maski):
    diff = nd.abs(output * maski - target * maski)
    return nd.smooth_l1(diff).mean()
Exemplo n.º 8
0
 def forward(self, output, label, mask):
     loss = nd.smooth_l1((output - label) * mask, scalar=1.0)
     return nd.mean(loss, self._batch_axis, exclude=True)