Exemplo n.º 1
0
    def generate(self, x: nd.NDArray = None, include_intermediate: bool = False, return_attn_params: bool = False) -> \
            Union[nd.NDArray, Tuple[nd.NDArray, nd.NDArray]]:
        """
        Generate a batch of samples from model. See Section 2.3 in paper.

        If x is None, this method generates unconditional samples from the model (as explained in Section 2.3 in the
        paper).

        If x is provided, this method reconstructs the input to generate the sample. This is not really a true sample
        from the model because the model looks at the image it is trying to generate. However, this is useful for seeing
        how the model generates a particular image. (I believe this is how the figures in the paper are generated.)

        :param x: Input to generate images from.
        :param include_intermediate: If True, samples from all timesteps (not only the last timestep) are returned.
        :param return_attn_params: If True, returns attention params along with generated samples.
        :return: n x input dim array of generated samples. If include_intermediate is True, then steps x n x input dim.
        """
        canvases = []
        attn_params = []

        canvas = nd.zeros((self._batch_size, self._input_dim), ctx=self._ctx)
        h_dec = nd.broadcast_to(self._dec_rnn_h_init.data(), (self._batch_size, 0))
        c_dec = nd.broadcast_to(self._dec_rnn_c_init.data(), (self._batch_size, 0))

        if x is not None:
            h_enc = nd.broadcast_to(self._enc_rnn_h_init.data(), (self._batch_size, 0))
            c_enc = nd.broadcast_to(self._enc_rnn_c_init.data(), (self._batch_size, 0))

        for i in range(self._num_steps):
            canvases.append(nd.sigmoid(canvas))

            if x is not None:
                err = x - nd.sigmoid(canvas)
                r, _ = self._read_layer(x, err, h_dec, c_dec)
                _, (h_enc, c_enc) = self._enc_rnn(nd.concat(r, h_dec, c_dec, dim=1), [h_enc, c_enc])

                q = self._enc_dense(h_enc)
                z = self._latent_layer(q)
            else:
                z = nd.random.normal(shape=(self._batch_size, self._latent_dim), ctx=self._ctx)

            _, (h_dec, c_dec) = self._dec_rnn(z, [h_dec, c_dec])
            w, attn_param = self._write_layer(h_dec, c_dec)
            attn_params.append(attn_param)
            canvas = canvas + w

        canvases.append(nd.sigmoid(canvas))

        if include_intermediate:
            samples = nd.stack(*canvases, axis=0)
        else:
            samples = canvases[-1]

        if return_attn_params:
            return samples, nd.stack(*attn_params, axis=0)
        else:
            return samples
Exemplo n.º 2
0
    def compute_scale(self, F, data: Tensor,
                      observed_indicator: Tensor) -> Tensor:
        """
        Parameters
        ----------
        F
            A module that can either refer to the Symbol API or the NDArray
            API in MXNet.

        data
            tensor containing the data to be scaled.

        observed_indicator
            observed_indicator: binary tensor with the same shape as
            ``data``, that has 1 in correspondence of observed data points,
            and 0 in correspondence of missing data points.

        Returns
        -------
        Tensor
            shape (N, T, C) or (N, C, T) scaled along the specified axis. 

        """

        axis_zero = nd.prod(
            data == data.zeros_like(), self.axis, keepdims=True
        )  # Along the specified axis, which array are always at zero
        axis_zero = nd.broadcast_to(
            axis_zero, shape=data.shape)  # Broadcast it to the shape of data

        min_val = nd.where(
            1 - observed_indicator,
            nd.broadcast_to(data.max(keepdims=True), shape=data.shape),
            data,
        ).min(
            axis=self.axis, keepdims=True
        )  # return the min value along specified axis while ignoring value according to observed_indicator
        max_val = nd.where(
            1 - observed_indicator,
            nd.broadcast_to(data.min(keepdims=True), shape=data.shape),
            data,
        ).max(
            axis=self.axis, keepdims=True
        )  # return the max value along specified axis while ignoring value according to observed_indicator

        scaled_data = (data - min_val) / (max_val - min_val)  # Rescale
        scaled_data = nd.where(
            axis_zero, scaled_data.zeros_like(), scaled_data
        )  # Clip Nan values to zero if the data was equal to zero along specified axis
        scaled_data = nd.where(
            scaled_data != scaled_data, scaled_data.ones_like(), scaled_data
        )  # Clip the Nan values to one. scaled_date!=scaled_data tells us where the Nan values are in scaled_data

        return nd.where(
            1 - observed_indicator, scaled_data.zeros_like(), scaled_data
        )  # Replace data with zero where observed_indicator tells us to.
Exemplo n.º 3
0
    def hybrid_forward(self, F, fts, ys, ftt, yt):
        """
        Semantic Alignment Loss
        :param F: Function
        :param yt: label for the target domain [N]
        :param ftt: features for the target domain [N, K]
        :param ys: label for the source domain [M]
        :param fts: features for the source domain [M, K]
        :return:
        """
        if self._fn:
            # Normalize ft
            fts = F.L2Normalization(fts, mode='instance')
            ftt = F.L2Normalization(ftt, mode='instance')

        fts_rpt = F.broadcast_to(fts.expand_dims(axis=0),
                                 shape=(self._bs_tgt, self._bs_src,
                                        self._embed_size))
        ftt_rpt = F.broadcast_to(ftt.expand_dims(axis=1),
                                 shape=(self._bs_tgt, self._bs_src,
                                        self._embed_size))

        dists = F.sum(F.square(ftt_rpt - fts_rpt), axis=2)

        yt_rpt = F.broadcast_to(yt.expand_dims(axis=1),
                                shape=(self._bs_tgt,
                                       self._bs_src)).astype('int32')
        ys_rpt = F.broadcast_to(ys.expand_dims(axis=0),
                                shape=(self._bs_tgt,
                                       self._bs_src)).astype('int32')

        y_same = F.equal(yt_rpt, ys_rpt).astype('float32')
        y_diff = F.not_equal(yt_rpt, ys_rpt).astype('float32')

        intra_cls_dists = dists * y_same
        inter_cls_dists = dists * y_diff

        max_dists = F.max(dists, axis=1, keepdims=True)
        max_dists = F.broadcast_to(max_dists,
                                   shape=(self._bs_tgt, self._bs_src))
        revised_inter_cls_dists = F.where(y_same, max_dists, inter_cls_dists)

        max_intra_cls_dist = F.max(intra_cls_dists, axis=1)
        min_inter_cls_dist = F.min(revised_inter_cls_dists, axis=1)

        loss = F.relu(max_intra_cls_dist - min_inter_cls_dist + self._margin)

        return loss
Exemplo n.º 4
0
 def forward(self, x):
     # input X is a 3D feature map
     self.P = F.batch_dot(
         F.broadcast_to(self.weight.data(), shape=(self.gram.shape)),
         self.gram.data())
     return F.batch_dot(
         F.SwapAxis(self.P, 1, 2).broadcast_to(
             (x.shape[0], self.C, self.C)),
         x.reshape((0, 0, x.shape[2] * x.shape[3]))).reshape(x.shape)
Exemplo n.º 5
0
    def generate(self,
                 v_q: nd.NDArray,
                 x_context: nd.NDArray,
                 v_context: nd.NDArray,
                 include_intermediate: bool = False,
                 **kwargs) -> Union[nd.NDArray, Tuple[nd.NDArray, nd.NDArray]]:
        """
        Generate a batch of samples from model. See Algorithm S3 in paper.

        :param v_q: Query view camera info.
        :param x_context: Context frames.
        :param v_context: Context camera info.
        :param include_intermediate: If True, samples from all timesteps (not only the last timestep) are returned.
        :return: n x *image_shape array of generated samples. If include_intermediate is True,
            then steps x n x *image_shape.
        """
        u = nd.zeros((self._batch_size, *self._upsample_output_shape),
                     ctx=self._ctx)  # canvas (reconstruction)
        h_dec = nd.zeros((self._batch_size, *self._rnn_hidden_shape),
                         ctx=self._ctx)
        c_dec = nd.zeros((self._batch_size, *self._rnn_hidden_shape),
                         ctx=self._ctx)

        # reshape camera information so we can concat it to image data
        v_q = nd.broadcast_to(
            nd.expand_dims(nd.expand_dims(v_q, axis=-1), axis=-1),
            (0, 0, *self._downsample_output_shape[1:]))

        outs = []  # sample(s) over time

        r = self._representation_nn(x_context, v_context)
        for i in range(self._num_steps):
            outs.append(self._out_layer(u))

            # Eq. S11
            p = self._p_layer(h_dec)
            p = nd.reshape(p, (self._batch_size, -1))
            z = self._latent_layer(p)

            gen_z = nd.reshape(z, (self._batch_size, self._num_latent_maps,
                                   *self._downsample_output_shape[1:]))
            _, (h_dec, c_dec) = self._gen_rnn(nd.concat(gen_z, v_q, r, dim=1),
                                              [h_dec, c_dec])

            u = u + self._upsample_nn(h_dec)

        outs.append(self._out_layer(u))

        if include_intermediate:
            samples = nd.stack(*outs, axis=0)
        else:
            samples = outs[-1]

        return nd.clip(samples, a_min=0.0, a_max=1.0)
Exemplo n.º 6
0
 def hybrid_forward(self, F, X, gram, weight):
     self.P = F.batch_dot(F.broadcast_to(weight, shape=(self.gram.shape)),
                          gram)
     if not isinstance(X, mx.symbol.Symbol):
         return F.batch_dot(
             F.SwapAxis(self.P, 1, 2).broadcast_to(
                 (X.shape[0], self.C, self.C)),
             X.reshape((0, 0, X.shape[2] * X.shape[3]))).reshape(X.shape)
     else:
         width = X.slice_axis(axis=2, begin=0, end=0)
         width = width.ones_like()
         width = width.sum()
         height = X.slice_axis(axis=3, begin=0, end=0)
         height = width.ones_like()
         height = width.sum()
         print "width", width
         print "height", height
         arg_shapes, out_shapes, aux_shapes = X.infer_shape_partial(
             data=(1, 3, self.width, self.height))  #1 , RGB, Width, Height
         return F.batch_dot(
             F.SwapAxis(self.P, 1, 2).broadcast_to(
                 (out_shapes[0][0], self.C, self.C)),
             X.reshape((0, 0, out_shapes[0][2] *
                        out_shapes[0][3]))).reshape(out_shapes[0])
Exemplo n.º 7
0
 def forward(self, X):
     # input X is a 3D feature map
     self.P = F.batch_dot(F.broadcast_to(self.weight.data(), shape=(self.gram.shape)), self.gram.data())
     return F.batch_dot(F.SwapAxis(self.P,1,2).broadcast_to((X.shape[0], self.C, self.C)), X.reshape((0,0,X.shape[2]*X.shape[3]))).reshape(X.shape)