Exemplo n.º 1
0
def test_append():
    A = np.ones((1, INT_OVERFLOW))
    B = np.ones((2, INT_OVERFLOW))
    A.attach_grad()
    with mx.autograd.record():
        C = np.append(A, B, axis=0)
    assert C.shape == (3, INT_OVERFLOW)
    assert C[2][0] == 1
    C.backward()
    assert A.grad.shape == (1, INT_OVERFLOW)
    assert A[0][0] == 1
Exemplo n.º 2
0
import math
from mxnet import np, npx, gluon, autograd
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()

#とりあえずNo1だけについて
W1 = np.array([[0.9, 0.3, 0.9], [-0.7, 0.3, -0.7]])
W2 = np.array([-0.3, -0.9, -0.7])
b1 = np.array([1])
b2 = np.array([1])
params = [W1, b1, W2, b2]
for param in params:
    param.attach_grad()

X = np.array([1, 1, 1])
X.attach_grad()
y_true = np.array([1])

with autograd.record():
    H = np.tanh(np.dot(W1, X))
    O = np.tanh(np.dot(W2, np.append(H, np.array([1]))))
    L = (y_true - O)**2
    L = 1 / 2 * L
L.backward()
print('predicted value:', O)
print('updated W1', W1 - W1.grad)
print('updated W2', W2 - W2.grad)
Exemplo n.º 3
0
import math
from mxnet import np, npx, gluon, autograd
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()

initial_w1 = np.array([[0.9, 0.3, 0.9], [-0.7, 0.3, -0.7]])
initial_w2 = np.array([-0.3, -0.9, -0.7])

true_labels = np.array([1, -1, 1, -1])
inputs = np.array([[1, 1, 1], [0, 1, 1], [0, 0, 1], [1, 0, 1]])

#No1についての予測, 以下No. n のm層目に関してh_n_m などと記述
h_1_1 = np.dot(initial_w1, inputs[0])
z_1_1 = np.append(np.tanh(h1), np.array([1]))
z_1_3 = np.dot(initial_w2, z_1_1)
y_hat_1 = np.tanh(z_1_3)

y_hat_1

#No1についてのロス