Exemplo n.º 1
0
def test_prod():
    inp = np.ones((2, INT_OVERFLOW))
    inp[0, 0], inp[-1, -1] = 2, 10
    inp.attach_grad()
    with mx.autograd.record():
        out1 = np.prod(inp, axis=1)
        out1.backward()
    assert out1.shape == (2, )
    assert out1[0] == 2 and out1[1] == 10
    assert inp.grad.shape == inp.shape
    assert inp.grad[-1, -1] == 1
    with mx.autograd.record():
        out2 = np.sum(inp, axis=0)
        out2.backward()
    assert out2.shape == (INT_OVERFLOW, )
    assert out2[0] == 2 and out2[-1] == 10
    assert inp.grad.shape == inp.shape
Exemplo n.º 2
0
def test_np_prod():
    class TestProd(HybridBlock):
        def __init__(self, axis=None, dtype=None, keepdims=False):
            super(TestProd, self).__init__()
            self._axis = axis
            self._dtype = dtype
            self._keepdims = keepdims

        def hybrid_forward(self, F, a, *args, **kwargs):
            return F.np.prod(a,
                             axis=self._axis,
                             dtype=self._dtype,
                             keepdims=self._keepdims)

    in_data_dim = random.choice([3, 4])
    shape = rand_shape_nd(in_data_dim, dim=3)
    for hybridize in [False, True]:
        for keepdims in [True, False]:
            for axis in ([i for i in range(in_data_dim)] + [(), None]):
                for itype in ['float32', 'float64']:
                    for dtype in ['float32', 'float64']:
                        # test gluon
                        test_prod = TestProd(axis=axis,
                                             dtype=dtype,
                                             keepdims=keepdims)
                        if hybridize:
                            test_prod.hybridize()
                        x = np.array(_np.random.uniform(-2.0, 2.0, size=shape),
                                     dtype=itype)
                        x.attach_grad()
                        print(x.grad.dtype)
                        expected_ret = _np.prod(x.asnumpy(),
                                                axis=axis,
                                                keepdims=keepdims)
                        expected_ret = expected_ret.astype(dtype)
                        with mx.autograd.record():
                            y = test_prod(x)
                        assert y.shape == expected_ret.shape
                        assert_almost_equal(y.asnumpy(),
                                            expected_ret,
                                            rtol=1e-3,
                                            atol=1e-5,
                                            use_broadcast=False)
                        y.backward()
                        # use keepdims=True so that broadcast divide can be used to calculate
                        # grad of input
                        expected_ret = _np.prod(x.asnumpy(),
                                                axis=axis,
                                                keepdims=True)
                        assert_almost_equal(x.grad.asnumpy(),
                                            expected_ret / x.asnumpy(),
                                            rtol=1e-3,
                                            atol=1e-3,
                                            use_broadcast=False)

                        # test numeric
                        if itype == 'float32' and dtype == 'float32':
                            x_sym = mx.sym.Variable("x").as_np_ndarray()
                            mx_sym = mx.sym.np.prod(
                                x_sym,
                                axis=axis,
                                dtype=dtype,
                                keepdims=keepdims).as_nd_ndarray()
                            check_numeric_gradient(mx_sym, [x.as_nd_ndarray()],
                                                   numeric_eps=1e-3,
                                                   rtol=1e-3,
                                                   atol=1e-4,
                                                   dtype=_np.float32)

                        # test imperative
                        mx_out = np.prod(x,
                                         axis=axis,
                                         dtype=dtype,
                                         keepdims=keepdims)
                        np_out = _np.prod(x.asnumpy(),
                                          axis=axis,
                                          keepdims=keepdims).astype(dtype)
                        assert_almost_equal(mx_out.asnumpy(),
                                            np_out,
                                            rtol=1e-3,
                                            atol=1e-5,
                                            use_broadcast=False)
Exemplo n.º 3
0
        train_acc_sum = sum(
            d2l.accuracy(py.asnumpy(), y.asnumpy()) for py, y in zip(pys, ys))
        l, acc = train_loss_sum, train_acc_sum
        metric.add(l, acc, ys_in.shape[0], ys_in.size)
        timer.stop()
        if (i + 1) % (num_batches // 5) == 0:
            animator.add(
                epoch + i / num_batches,
                (metric[0] / metric[2], metric[1] / metric[3], None, None))

    # val_acc = d2l.evaluate_accuracy_gpus(net, val_iter, split_f)
    metric_val = d2l.Accumulator(2)  # num_corrected_examples, num_examples
    for i, (Xs_in, ys_in) in enumerate(DataLoader_Single_test):
        Xs = gluon.utils.split_and_load(Xs_in.astype("float32"), ctx)
        ys = gluon.utils.split_and_load(ys_in.astype("float32"), ctx)
        pys = [net(X) for X in Xs]
        ls = [loss(py, y) for py, y in zip(pys, ys)]
        val_loss_sum = sum([float(l.sum().asnumpy()[0]) for l in ls])

        OA_val = np.sum(
            np.argmax(pys[0].asnumpy(), axis=1) == ys[0].asnumpy()).astype(
                "float32") / np.prod(ys[0].shape)
        metric_val.add(OA_val, len(ys))

    val_acc = OA_val
    animator.add(epoch + 1,
                 (None, None, val_loss_sum / ys_in.shape[0], val_acc))
print('loss %.3f, train acc %.3f, val acc %.3f' %
      (metric[0] / metric[2], metric[1] / metric[3], val_acc))
print('%.1f examples/sec on %s' %
      (metric[2] * num_epochs / timer.sum(), d2l.try_all_gpus()))