Exemplo n.º 1
0
def benchmark(mod, dry_run=10, iterations=10):
    if len(mod._context) == 1:
        ctx = mod._context[0]
    else:
        ctx = mx.cpu()
    data = [mx.random.uniform(-1.0, 1.0, shape=shape, ctx=ctx) for _, shape in mod.data_shapes]
    label = [mx.nd.array(np.random.randint(1, 100, size=shape), ctx=ctx) for _, shape in mod.label_shapes]
    batch = mx.io.DataBatch(data, label)

    # dry run
    for i in range(dry_run):
        mod.forward(batch, is_train=True)
        mod.backward()
        for output in mod.get_outputs(merge_multi_context=False)[0]:
            output.wait_to_read()
        mod.update()

    t0 = time.clock()

    profiler.profiler_set_state('run')
    # real run
    for i in range(iterations):
        mod.forward(batch, is_train=True)
        mod.backward()
        mod.update()
        for output in mod.get_outputs(merge_multi_context=False)[0]:
            output.wait_to_read()
    profiler.profiler_set_state('stop')

    t1 = time.clock()
    return (t1 - t0)*1000.0 / iterations
Exemplo n.º 2
0
def benchmark(mod, dry_run=10, iterations=10):
    if len(mod._context) == 1:
        ctx = mod._context[0]
    else:
        ctx = mx.cpu()
    data = [mx.random.uniform(-1.0, 1.0, shape=shape, ctx=ctx) for _, shape in mod.data_shapes]
    label = [mx.nd.array(np.random.randint(1, 100, size=shape), ctx=ctx) for _, shape in mod.label_shapes]
    batch = mx.io.DataBatch(data, label)

    # dry run
    for i in range(dry_run):
        mod.forward(batch, is_train=True)
        mod.backward()
        for output in mod.get_outputs(merge_multi_context=False)[0]:
            output.wait_to_read()
        mod.update()

    t0 = time.clock()

    profiler.profiler_set_state('run')
    # real run
    for i in range(iterations):
        mod.forward(batch, is_train=True)
        mod.backward()
        mod.update()
        for output in mod.get_outputs(merge_multi_context=False)[0]:
            output.wait_to_read()
    profiler.profiler_set_state('stop')

    t1 = time.clock()
    return (t1 - t0)*1000.0 / iterations
Exemplo n.º 3
0
def test_profiler():
    profile_filename = "test_profile.json"
    iter_num = 100
    begin_profiling_iter = 50
    end_profiling_iter = 50

    profiler.profiler_set_config(mode='symbolic', filename=profile_filename)
    print('profile file save to {0}'.format(profile_filename))

    A = mx.sym.Variable('A')
    B = mx.sym.Variable('B')
    C = mx.symbol.dot(A, B)

    executor = C.simple_bind(mx.cpu(1),
                             'write',
                             A=(4096, 4096),
                             B=(4096, 4096))

    a = mx.random.uniform(-1.0, 1.0, shape=(4096, 4096))
    b = mx.random.uniform(-1.0, 1.0, shape=(4096, 4096))

    a.copyto(executor.arg_dict['A'])
    b.copyto(executor.arg_dict['B'])

    flag = False
    print("execution begin")
    for i in range(iter_num):
        if i == begin_profiling_iter:
            t0 = time.clock()
            profiler.profiler_set_state('run')
        if i == end_profiling_iter:
            t1 = time.clock()
            profiler.profiler_set_state('stop')
        executor.forward()
        c = executor.outputs[0]
        c.wait_to_read()
    print("execution end")
    duration = t1 - t0
    print('duration: {0}s'.format(duration))
    print('          {0}ms/operator'.format(duration * 1000 / iter_num))
Exemplo n.º 4
0
def test_profiler():
    profile_filename = "test_profile.json"
    iter_num = 100
    begin_profiling_iter = 50
    end_profiling_iter = 50


    profiler.profiler_set_config(mode='symbolic', filename=profile_filename)
    print('profile file save to {0}'.format(profile_filename))

    A = mx.sym.Variable('A')
    B = mx.sym.Variable('B')
    C = mx.symbol.dot(A, B)

    executor = C.simple_bind(mx.cpu(1), 'write', A=(4096, 4096), B=(4096, 4096))

    a = mx.random.uniform(-1.0, 1.0, shape=(4096, 4096))
    b = mx.random.uniform(-1.0, 1.0, shape=(4096, 4096))

    a.copyto(executor.arg_dict['A'])
    b.copyto(executor.arg_dict['B'])

    flag = False
    print("execution begin")
    for i in range(iter_num):
        if i == begin_profiling_iter:
            t0 = time.clock()
            profiler.profiler_set_state('run')
        if i == end_profiling_iter:
            t1 = time.clock()
            profiler.profiler_set_state('stop')
        executor.forward()
        c = executor.outputs[0]
        c.wait_to_read()
    print("execution end")
    duration = t1 - t0
    print('duration: {0}s'.format(duration))
    print('          {0}ms/operator'.format(duration*1000/iter_num))
Exemplo n.º 5
0
 def switch_profiler(param):
     if param.epoch == 0 and param.nbatch == 100:
         profiler.profiler_set_state('run')
     if param.epoch == 0 and param.nbatch == 110:
         profiler.profiler_set_state('stop')
         profiler.dump_profile()