Exemplo n.º 1
0
def resnet(units, num_stage, filter_list, num_class, data_type, bottle_neck=True, bn_mom=0.9, workspace=512, memonger=False):
    """Return ResNet symbol of cifar10 and imagenet
    Parameters
    ----------
    units : list
        Number of units in each stage
    num_stage : int
        Number of stage
    filter_list : list
        Channel size of each stage
    num_class : int
        Ouput size of symbol
    dataset : str
        Dataset type, only cifar10 and imagenet supports
    workspace : int
        Workspace used in convolution operator
    """
    num_unit = len(units)
    assert(num_unit == num_stage)
    # data = mxc.Variable(name='data')
    data = 'data'
    data = mxc.BatchNorm(data=data, fix_gamma=True, eps=2e-5, momentum=bn_mom, name='bn_data')
    if data_type == 'cifar10':
        body = mxc.Convolution(data=data, num_filter=filter_list[0], kernel=(3, 3), stride=(1,1), pad=(1, 1),
                                  no_bias=True, name="conv0", workspace=workspace)
    elif data_type == 'imagenet':
        body = mxc.Convolution(data=data, num_filter=filter_list[0], kernel=(7, 7), stride=(2,2), pad=(3, 3),
                                  no_bias=True, name="conv0", workspace=workspace)
        body = mxc.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0')
        body = mxc.Activation(data=body, act_type='relu', name='relu0')
        body = mxc.Pooling(data=body, name="pool0", kernel=(3, 3), stride=(2,2), pad=(1,1), pool_type='max')
    else:
         raise ValueError("do not support {} yet".format(data_type))
    for i in range(num_stage):
        body = residual_unit(body, filter_list[i+1], (1 if i==0 else 2, 1 if i==0 else 2), False,
                             name='stage%d_unit%d' % (i + 1, 1), bottle_neck=bottle_neck, workspace=workspace,
                             memonger=memonger)
        for j in range(units[i]-1):
            body = residual_unit(body, filter_list[i+1], (1,1), True, name='stage%d_unit%d' % (i + 1, j + 2),
                                 bottle_neck=bottle_neck, workspace=workspace, memonger=memonger)
    bn1 = mxc.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1')
    relu1 = mxc.Activation(data=bn1, act_type='relu', name='relu1')
    # Although kernel is not used here when global_pool=True, we should put one
    # pool1 = mxc.Pooling(data=relu1, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1')
    pool1 = mxc.Pooling(data=relu1, kernel=(7, 7), pool_type='avg', name='pool1')
    flat = mxc.Flatten(data=pool1, name='flatten')
    fc1 = mxc.FullyConnected(data=flat, num_hidden=num_class, name='fc1')
Exemplo n.º 2
0
def get_conv(name, data, num_filter, kernel, stride, pad, with_relu,
             bn_momentum):
    conv = mxc.Convolution(name=name,
                           data=data,
                           num_filter=num_filter,
                           kernel=kernel,
                           stride=stride,
                           pad=pad,
                           no_bias=True)
    bn = mxc.BatchNorm(
        name=name + '_bn',
        data=conv,
        fix_gamma=False,
        momentum=bn_momentum,
        # Same with https://github.com/soumith/cudnn.torch/blob/master/BatchNormalization.lua
        # cuDNN v5 don't allow a small eps of 1e-5
        eps=2e-5)
    return (
        # It's better to remove ReLU here
        # https://github.com/gcr/torch-residual-networks
        mxc.Activation(name=name +
                       '_relu', data=bn, act_type='relu') if with_relu else bn)
Exemplo n.º 3
0
def ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), name=None, suffix=''):
    conv = mxc.Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, name='conv_%s%s' %(name, suffix))
    bn = mxc.BatchNorm(data=conv, name='bn_%s%s' %(name, suffix))
    act = mxc.Activation(data=bn, act_type='relu', name='relu_%s%s' %(name, suffix))
    return act
Exemplo n.º 4
0
def make_block(name, data, num_filter, dim_match, bn_momentum):
    conv1 = get_conv(name=name + '_conv1',
                     data=data,
                     num_filter=num_filter,
                     kernel=(3, 3),
                     stride=(1, 1) if dim_match else (2, 2),
                     pad=(1, 1),
                     with_relu=True,
                     bn_momentum=bn_momentum)
    conv2 = get_conv(name=name + '_conv2',
                     data=conv1,
                     num_filter=num_filter,
                     kernel=(3, 3),
                     stride=(1, 1),
                     pad=(1, 1),
                     with_relu=False,
                     bn_momentum=bn_momentum)
    if dim_match:
        shortcut = data
    else:
        # Like http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006
        # Test accuracy 0.922+ on CIFAR10 with 56 layers
        # shortcut = get_conv(
        # name=name + '_proj',
        # data=data,
        # num_filter=num_filter,
        # kernel=(1, 1),
        # stride=(2, 2),
        # pad=(0, 0),
        # with_relu=False,
        # bn_momentum=bn_momentum
        # )

        # Type A shortcut
        # Note we use kernel (2, 2) rather than (1, 1) and a custom initializer
        # in train_cifar10_resnet.py
        # Test accuracy 0.918 on CIFAR10 with 56 layers and kernel (1, 1)
        # TODO(Answeror): Don't know why (1, 1) got much lower accuracy
        shortcut = mxc.Convolution(name=name + '_proj',
                                   data=data,
                                   num_filter=num_filter,
                                   kernel=(2, 2),
                                   stride=(2, 2),
                                   pad=(0, 0),
                                   no_bias=True)

        # Same with above, but ugly
        # Mxnet don't have nn.Padding as that in
        # https://github.com/gcr/torch-residual-networks/blob/master/residual-layers.lua
        # shortcut = mxc.Pooling(
        # data=data,
        # name=name + '_pool',
        # kernel=(2, 2),
        # stride=(2, 2),
        # pool_type='avg'
        # )
        # shortcut = mxc.Concat(
        # shortcut,
        # mxc.minimum(shortcut + 1, 0),
        # num_args=2
        # )
    fused = mxc.Add(name=name + '_fused', bottoms=[shortcut, conv2])
    return mxc.Activation(name=name + '_relu', data=fused, act_type='relu')
Exemplo n.º 5
0
def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, bn_mom=0.9, workspace=512, memonger=False):
    """Return ResNet Unit symbol for building ResNet
    Parameters
    ----------
    data : str
        Input data
    num_filter : int
        Number of output channels
    bnf : int
        Bottle neck channels factor with regard to num_filter
    stride : tupe
        Stride used in convolution
    dim_match : Boolen
        True means channel number between input and output is the same, otherwise means differ
    name : str
        Base name of the operators
    workspace : int
        Workspace used in convolution operator
    """
    if bottle_neck:
        # the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper
        bn1 = mxc.BatchNorm(data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1')
        act1 = mxc.Activation(data=bn1, act_type='relu', name=name + '_relu1')
        conv1 = mxc.Convolution(data=act1, num_filter=int(num_filter*0.25), kernel=(1,1), stride=(1,1), pad=(0,0),
                                      no_bias=True, workspace=workspace, name=name + '_conv1')
        bn2 = mxc.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2')
        act2 = mxc.Activation(data=bn2, act_type='relu', name=name + '_relu2')
        conv2 = mxc.Convolution(data=act2, num_filter=int(num_filter*0.25), kernel=(3,3), stride=stride, pad=(1,1),
                                      no_bias=True, workspace=workspace, name=name + '_conv2')
        bn3 = mxc.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3')
        act3 = mxc.Activation(data=bn3, act_type='relu', name=name + '_relu3')
        conv3 = mxc.Convolution(data=act3, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True,
                                   workspace=workspace, name=name + '_conv3')
        if dim_match:
            shortcut = data
        else:
            shortcut = mxc.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
                                            workspace=workspace, name=name+'_sc')
        if memonger:
            shortcut._set_attr(mirror_stage='True')
        fused = mxc.Add(
            name = name + '_fused',
            bottoms = [conv3, shortcut])
        return fused
    else:
        bn1 = mxc.BatchNorm(data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn1')
        act1 = mxc.Activation(data=bn1, act_type='relu', name=name + '_relu1')
        conv1 = mxc.Convolution(data=act1, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1),
                                      no_bias=True, workspace=workspace, name=name + '_conv1')
        bn2 = mxc.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2')
        act2 = mxc.Activation(data=bn2, act_type='relu', name=name + '_relu2')
        conv2 = mxc.Convolution(data=act2, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1),
                                      no_bias=True, workspace=workspace, name=name + '_conv2')
        if dim_match:
            shortcut = data
        else:
            shortcut = mxc.Convolution(data=act1, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True,
                                            workspace=workspace, name=name+'_sc')
        if memonger:
            shortcut._set_attr(mirror_stage='True')
        fused = mxc.Add(
            name = name + '_fused',
            bottoms = [conv2, shortcut])
        return fused
Exemplo n.º 6
0
def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=''):
    conv = mxc.Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, name='%s%s_conv2d' %(name, suffix))
    bn = mxc.BatchNorm(data=conv, name='%s%s_batchnorm' %(name, suffix))
    act = mxc.Activation(data=bn, act_type='relu', name='%s%s_relu' %(name, suffix))
    return act