my_discretization = sampler.compute_QoI_and_create_discretization(input_samples, savefile = '3to2_discretization.txt.gz') ''' Suggested changes for user: Try different reference parameters. ''' # Define the reference parameter param_ref = np.array([0.5, 0.5, 0.5]) #param_ref = np.array([0.75, 0.75, 0.5]) #param_ref = np.array([0.75, 0.75, 0.75]) #param_ref = np.array([0.5, 0.5, 0.75]) # Compute the reference QoI Q_ref = my_model(param_ref) # Create some plots of input and output discretizations plotD.scatter_2D_multi(input_samples, ref_sample= param_ref, showdim = 'all', filename = 'linearMap_ParameterSamples', file_extension = '.eps') plotD.show_data_domain_2D(my_discretization, Q_ref = Q_ref, file_extension='.eps') ''' Suggested changes for user: Try different ways of discretizing the probability measure on D defined as a uniform probability measure on a rectangle (since D is 2-dimensional) centered at Q_ref whose size is determined by scaling the circumscribing box of D. ''' randomDataDiscretization = False
# Create the discretization object using the input samples my_discretization = sampler.compute_QoI_and_create_discretization( input_samples, savefile='NonlinearExample.txt.gz') ''' Suggested changes for user: Try different reference parameters. ''' # Define the reference parameter param_ref = np.array([5.5, 4.5]) #param_ref = np.array([4.5, 3.0]) #param_ref = np.array([3.5, 1.5]) # Compute the reference QoI Q_ref = my_model(param_ref) # Create some plots of input and output discretizations plotD.scatter_2D(input_samples, ref_sample=param_ref, filename='nonlinearMapParameterSamples', file_extension='.eps') if Q_ref.size == 2: plotD.show_data_domain_2D(my_discretization, Q_ref=Q_ref, file_extension=".eps") ''' Suggested changes for user: Try different ways of discretizing the probability measure on D defined as a uniform probability measure on a rectangle or interval depending