def __init__(self,
                 trainee,
                 feature_transformer,
                 persist_path,
                 optimizer_params=None,
                 loss=None):
        super(SupervisedDriver, self).__init__()
        self.supervisor = MyDriver()
        self.feature_transformer = feature_transformer
        self.trainee = trainee
        self.persist_path = persist_path

        if optimizer_params is None:
            optimizer_params = {"lr": 0.001, "momentum": 0.9}

        if loss is None:
            loss = nn.MSELoss()

        # loss
        self.loss = loss

        # optimizer
        self.optimizer = optim.SGD(self.trainee.parameters(),
                                   **optimizer_params)

        self.call_number = 0
Exemplo n.º 2
0
def run_client(client_id, genome, network, evaluation):
    driver = MyDriver(network=network, logdata=False)
    client = Client(driver=driver, port=3001 + client_id)

    print(client_id, 'driving...')
    client.run()

    # evaluation.extend(driver.eval(2587.54)) # track length for aalborg
    evaluation.extend(driver.eval(3260.43))  # track length for eroad
Exemplo n.º 3
0
def eval_fitness(genomes, config):
    # start torcs serever
    # start torcs client
    # wait until finished
    # fitness = results
    for genome_id, genome in genomes:
        genome.fitness = 0
        net = neat.nn.RecurrentNetwork.create(genome, config)

        pickle.dump(net,open('network.p','wb'))
        print("Starting simulation...")

        # run_torcs from yaml
        # last_path = (os.getcwd())
        # os.chdir("../")
        # # print(os.getcwd())
        # os.system('./torcs_tournament.py quickrace.yml') # forza
        # os.chdir(last_path)

        main(MyDriver(logdata=False))

        # genome.fitness =
        # print(genome.fitness)

        fitness_file = open('fitness.txt', 'r')
        for f in fitness_file:
            genome.fitness = float(f)
        print("Fitness: ",genome.fitness)
Exemplo n.º 4
0
def fitness(pop):
    """
    Recieves a list of pop. Modify ONLY their
    fitness values
    """
    for g in pop:
        g['fitness'] = 0

        # nw_activate = neat.generate_network(g)
        # for xi, xo in zip(xor_inputs, xor_outputs):
        #     output = nw_activate(xi)
        #     g['fitness'] -= (output[0] - xo[0]) ** 2

        print(type(g))
        pickle.dump(g, open('network.p', 'wb'))

        main(MyDriver(logdata=False))

        # predictions = []
        # for input in inputs:
        #     output_pred = nw_activate(input)
        #     predictions.append(output_pred)
        #     # genome.fitness += (  abs(output_real[0] - output_pred[0])  )
        # fitness = 0 - sklearn.metrics.mean_squared_error(outputs, predictions)
        # f = open('fitness.txt', 'w')
        # f.write(str(fitness) + "\n")
        # f.close()
        #
        fitness_file = open('fitness.txt', 'r')
        for f in fitness_file:
            g['fitness'] = float(f)
Exemplo n.º 5
0
def eval_genomes(genomes, config):
    # start torcs serever
    # start torcs client
    # wait until finished
    # fitness = results
    for genome_id, genome in genomes:
        genome.fitness = 0

        net = neat.nn.RecurrentNetwork.create(genome, config)

        with open('network.p', 'wb') as handle:
            pickle.dump(net, handle, protocol=pickle.HIGHEST_PROTOCOL)

        main(MyDriver(logdata=False))

        # predictions = []
        # for input, output_real in zip((inputs), (outputs)):
        #     output_pred = te.activate(input)
        #     predictions.append(output_pred)
        #     # genome.fitness += (  abs(output_real[0] - output_pred[0])  )


        # fitness = 0 - sklearn.metrics.mean_squared_error(outputs,predictions)
        # f = open('fitness.txt', 'w')
        # f.write(str(fitness) + "\n")
        # f.close()

        fitness_file = open('fitness.txt', 'r')
        for f in fitness_file:
            fitness = f

        genome.fitness  = float(f)
class SupervisedDriver(Driver):
    def __init__(self,
                 trainee,
                 feature_transformer,
                 persist_path,
                 optimizer_params=None,
                 loss=None):
        super(SupervisedDriver, self).__init__()
        self.supervisor = MyDriver()
        self.feature_transformer = feature_transformer
        self.trainee = trainee
        self.persist_path = persist_path

        if optimizer_params is None:
            optimizer_params = {"lr": 0.001, "momentum": 0.9}

        if loss is None:
            loss = nn.MSELoss()

        # loss
        self.loss = loss

        # optimizer
        self.optimizer = optim.SGD(self.trainee.parameters(),
                                   **optimizer_params)

        self.call_number = 0

    def drive(self, state):
        self.call_number += 1

        command = self.supervisor.drive(state)

        x = self.feature_transformer.transform(state)
        y_predicted = self.trainee(x)
        y_true = Variable(
            torch.FloatTensor(
                [command.steering, command.brake, command.accelerator]))

        self.optimizer.zero_grad()
        loss = self.loss(y_predicted, y_true)
        loss.backward()

        self.optimizer.step()

        if self.call_number % 1000 == 0:
            print("Step: {}".format(self.call_number))
            print("Prediction", y_predicted)
            print("True", y_true)
            print("loss", loss)

            print()

        return command

    def on_shutdown(self):
        torch.save(self.trainee, self.persist_path)
Exemplo n.º 7
0
def eval_genomes(genomes, config):
    importlib.reload(my_driver)
    from my_driver import MyDriver

    best_time = float('inf')
    finished = 0

    for idx, item in enumerate(genomes):
        print('idx:', idx)

        genome_id, genome = item
        net = neat.nn.FeedForwardNetwork.create(genome, config)

        print('start server')
        server_proc = subprocess.Popen(["torcs", "-r", torcs_config_file],
                                       stdout=subprocess.PIPE)

        driver = MyDriver(network=net, logdata=False)
        client = Client(driver=driver)

        print('driving...')
        client.run()

        try:
            server_proc.wait(timeout=20)
        except subprocess.TimeoutExpired as ex:
            process = psutil.Process(server_proc.pid)
            for proc in process.children(recursive=True):
                proc.kill()
            process.kill()

        genome.fitness = driver.eval(2057.56)  # track length for speedway
        # genome.fitness = driver.eval(6355.65) # track length for alpine 1
        # genome.fitness = driver.eval(3274.20) # track length for ruudskogen
        print('fitness:   ', genome.fitness, '\n')

        if driver.prev_state.last_lap_time:
            finished += 1
            if driver.prev_state.last_lap_time < best_time:
                best_time = driver.prev_state.last_lap_time

    print('Best time: ', best_time)
    print('Finished races: ', finished)
Exemplo n.º 8
0
def eval_genome(genome, config):

    net = neat.nn.FeedForwardNetwork.create(genome, config)

    subprocess.call('myneat/autostart.sh', shell=True)

    main(MyDriver(net))

    with open('myneat/fitnessFile', 'r') as fitnessFile:
        fitness = float(fitnessFile.read())

    subprocess.call('myneat/autostop.sh', shell=True)
    print('fitness: {}'.format(fitness))
    return fitness
Exemplo n.º 9
0
def evaluate_xor(genome):
    net = NEAT.NeuralNetwork()

    try:

        subprocess.call('./autostart.sh', shell=True)
        # print("b")
        # time.sleep(1)
        # print("c")
        main(MyDriver(net=net))
        # print("d")
        with open("mydata.txt", 'r') as f:
            fitt = f.read()
        # os.system('pkill torcs')
        subprocess.call('./autostop.sh', shell=True)
        print("fitness *******************   ", fitt)
        return float(fitt)

    except Exception as ex:
        print('Exception:', ex)
        return 0.0
Exemplo n.º 10
0
def eval_genome(genome, config):
    # net = neat.nn.FeedForwardNetwork.create(genome, config)
    net = neat.nn.FeedForwardNetwork.create(genome, config)
    # print("meh")
    # os.system('pkill torcs')
    # time.sleep(5)
    # subprocess.call('torcs',shell=True)
    # os.system('torcs')
    # print("a")
    # time.sleep(1)
    # cwd=os.getcwd()
    subprocess.call('./autostart.sh', shell=True)
    # print("b")
    # time.sleep(1)
    # print("c")
    main(MyDriver(net=net))
    # print("d")
    with open("mydata.txt", 'r') as f:
        fitt = f.read()
    # os.system('pkill torcs')
    subprocess.call('./autostop.sh', shell=True)
    print("fitness *******************   ", fitt)
    return float(fitt)
Exemplo n.º 11
0
def evaluate_xor(genome):
    net = NEAT.NeuralNetwork()
    genome.BuildHyperNEATPhenotype(net, substrate)
    # nn=genome.BuildHyperNEATPhenotype(net, substrate)
    # error = 0
    # depth = 5

    # do stuff and return the fitness
    # net.Flush()
    net = NEAT.NeuralNetwork()
    genome.BuildPhenotype(net)
    img = np.zeros((400, 400, 3), dtype=np.uint8)
    img += 10
    NEAT.DrawPhenotype(img, (0, 0, 400, 400), net)
    cv2.imshow("CPPN", img)
    # Visualize best network's Pheotype
    net = NEAT.NeuralNetwork()
    genome.BuildESHyperNEATPhenotype(net, substrate, params)
    img = np.zeros((800, 800, 3), dtype=np.uint8)
    img += 10

    NEAT.DrawPhenotype(img, (0, 0, 800, 800), net, substrate=True)
    cv2.imshow("NN", img)
    cv2.waitKey(33)

    subprocess.call('./autostart.sh',shell=True)
    # print("b")
    # time.sleep(1)
    # print("c")
    main(MyDriver(net=net))
    # print("d")
    with open("mydata.txt",'r') as f:
        fitt=f.read()
    # os.system('pkill torcs')
    subprocess.call('./autostop.sh',shell=True)
    # print("fitness *******************   ",fitt)
    return float(fitt)
Exemplo n.º 12
0
#! /usr/bin/env python3
# 11 12 22:55
from pytocl.main import main
from my_driver import MyDriver

if __name__ == '__main__':
    main(MyDriver(logdata=False))
Exemplo n.º 13
0
    def evolve_population(self,
                          population,
                          two_cars=False,
                          random_track=True,
                          no_opponents=0,
                          print_ea_info=True,
                          print_car_values=False):
        dir_name = self.make_directory()  # Make directory to store networks

        all_networks = []  # Initialize list with all networks

        for gen_no in range(self.NO_GENERATIONS):  # For all generations

            self.adapt_xml(
                random_track=random_track,
                two_cars=two_cars,
                no_opponents=no_opponents)  # Set random track and opponent

            individual_counter = 0
            for network in population:  # For every individual in a population
                individual_counter += 1

                server_proc = self.init_process()  # Initialize socket process

                result_queue = multiprocessing.Queue(
                )  # Queue to store fitness values

                p1 = multiprocessing.Process(target=main,
                                             args=(MyDriver(network=network),
                                                   self.no_frames_list[gen_no],
                                                   3001, result_queue,
                                                   print_car_values))
                p1.start()

                if two_cars == True:
                    p2 = multiprocessing.Process(
                        target=main,
                        args=(MyDriver(network=network),
                              self.no_frames_list[gen_no], 3002, result_queue,
                              print_car_values))
                    p2.start()

                p1.join()

                if two_cars == True:
                    p2.join()

                self.fitness1 = result_queue.get()  # Get fitness from queue
                if two_cars == True:
                    self.fitness2 = result_queue.get()

                network.fitness = self.fitness1 + self.fitness2  # Assign fitness to network object

                if print_ea_info == True:
                    print()
                    print("-------------")
                    print()
                    print("No frames 	", self.no_frames_list[gen_no])
                    print()
                    print("generation 	", gen_no)
                    print("individual 	", individual_counter)
                    print()
                    if two_cars == True:
                        print("Fitness1 	", self.fitness1)
                        print("Fitness2 	", self.fitness2)
                    print()
                    print("Fitness 	", network.fitness)
                    print()
                    print("-------------")
                    print()

                all_networks.append(
                    network)  # Append network to all_network object
                self.kill_process(server_proc)  # Kill process

            self.save_networks(dir_name, all_networks,
                               '_all')  # Save file with all networks
            self.save_networks(dir_name, population,
                               gen_no)  # Save all networks
            print()
            print('__________________________________')
            print('__________________________________')
            print()

            best_networks = self.select_best(
                population
            )  # Select best fraction of the population to make offspring

            print()
            print("Fitness of best network from last generation",
                  best_networks[0].fitness)

            children = self.generate_children(
                best_networks)  # Generate children population

            population = self.mutate_population(
                children)  # Mutate part of the population

            print("Population size ", len(population))

            print()
            print('__________________________________')
            print('__________________________________')
            print()

        print()
        print("Training finished ( ͡° ͜ʖ ͡°).	")
        print("The dir name is 				", dir_name)
        print("The amount of generations is ", self.NO_GENERATIONS)
        return best_networks[
            0]  # Return final best network with highest fitness
Exemplo n.º 14
0
    for i in range(0,le):
        networks2.append(networks[i])
        #networks2.append(networks[len(networks)-1])
    return networks2

if __name__ == '__main__':
    print("started")
    MyDriver.networks=[]
    temp_networks=[]
    for i in range(0,62):
         temp_networks.append(read_networks(i))

        #MyDriver.add_network(read_networks(i))
        #MyDriver.add_network(read_networks(35))
    temp_networks=sort(temp_networks)
    print(len(temp_networks))
    for i in range(0,len(temp_networks)):
        temp_networks[i].fitness=0
        MyDriver.add_network(temp_networks[i])
    MyDriver.index=-1
    MyDriver.network=MyDriver.get_best_network()
    my_driver=MyDriver(logdata=False)
    my_driver.msg='dd'
    my_driver.distance=0.0
    my_driver.speed_x=0.0
    my_driver.brake=0.0
    my_driver.count=0
    my_driver.net_score={}
    MyDriver.num_childs=50
    main(my_driver,3001)
Exemplo n.º 15
0
    data = get_settings()
    platform = data["os"]
    start_index = data.get("start_index")
    excel_file = data.get("excel_file")
    output_excel_file = data.get("output_excel_file")
    num_to_download = data.get("num_to_download")
    headless = data.get("headless")

    excel_handler = ExcelHandler(output_excel_file)

    # Get keywords
    excel_parser = ExcelParser(excel_file)
    keywords = excel_parser.get_keywords()

    # Init a webdriver instance
    driver = MyDriver.chrome_driver(headless)
    driver = init_driver(driver)

    # Go to image search page
    search_page = GooglePage(driver)
    search_page.go_to_img_search_page()
    row = 1
    try:
        for idx, keyword in enumerate(keywords):
            if idx >= start_index - 1:
                print("Number {}: {}".format(idx + 1, keyword))
                # generate folder to store images
                img_folder = get_img_folder(idx + 1, keyword, platform)
                # folder = generate_folder_by_time(img_folder, platform)
                folder = img_folder
Exemplo n.º 16
0
        (datalist[29], datalist[30], datalist[31], datalist[32], datalist[33])
    })
    return state


def predictionToFloat(prediction: Variable) -> float:
    return prediction.data.numpy()[0]


# steeringData = SteeringTrainingData(pandas.read_csv('training-data/train_data/alpine-1.csv'))
# brakingData = BrakingTrainingData(pandas.read_csv('training-data/train_data/alpine-1.csv'))

steeringData = ExtendedSteeringData()

observations = []
driver = MyDriver()

for i in range(len(steeringData)):

    state = dataToStateExtended(steeringData[i][0])
    sample = Trainer.stateToSample(state)

    command = driver.drive(state)
    #
    # observation = {
    #     'target': (brakingData[i][1]).numpy()[0],
    #     'actual': command.brake
    # }

    observation = {
        'target': (steeringData[i][1]).numpy()[0],
Exemplo n.º 17
0
        #     help='Model name.',
        #     type=str
        # )
        parser.add_argument('-o',
                            '--output_file',
                            help='File where to print results.',
                            type=str)
        args, _ = parser.parse_known_args()

        print(args.parameters_file)
        print(args.output_file)
        #print(args.name)

        if args.parameters_file is not None:
            print('NN driver!!!!!!')
            main(MyDriver(args.parameters_file,
                          out_file=args.output_file))  #, name=args.name))
        else:
            main(Driver())

    except Exception as exc:
        traceback.print_exc()
        sys.stdout = orig_stdout
        sys.stderr = orig_stderr
        file_out.close()
        file_err.close()

        copyfile('../debug/out.log', '../debug/out_{}.log'.format(tm.time()))
        copyfile('../debug/err.log', '../debug/err_{}.log'.format(tm.time()))
        raise

    sys.stdout = orig_stdout
Exemplo n.º 18
0
#! /usr/bin/env python3

from pytocl.main import main
from my_driver import MyDriver
import os

for root, dirs, files in os.walk('team_communication/positions'):
    for f in files:
        os.unlink(os.path.join(root, f))

if __name__ == '__main__':
    main(MyDriver())
Exemplo n.º 19
0

if __name__ == '__main__':

	local_dir = os.path.dirname(__file__)
	config_path = os.path.join(local_dir, 'config-ctrnn')
	config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
	                     neat.DefaultSpeciesSet, neat.DefaultStagnation,
	                     config_path)

	with open('winner-feedforward', 'rb') as f:
		c = pickle.load(f)

	print('Loaded genome:')
	net=neat.ctrnn.CTRNN.create(c, config, 10)
	

	# subprocess.call('./start.sh',shell=True)
	

	main(MyDriver(net=net))
	

	with open("mydata.txt",'r') as f:
		fitt=f.read()
	

	# subprocess.call('./autostop.sh',shell=True)

	print("fitness *******************   ",fitt)
Exemplo n.º 20
0
#! /usr/bin/env python3

from pytocl.main import main
from my_driver import MyDriver

if __name__ == '__main__':
    main(MyDriver(None))