dra_ns, ddec_ns = residual_calc02(dra, ddec, ra_rad, dec_rad, w2 / 1.e3)

    # Now re-calculate the normalized difference
    sep = nor_sep_calc(dra_ns, dra_err, ddec_ns, ddec_err,
                       dra_ddec_cov / dra_err / ddec_err)
    X = np.array(sep[-1])

    return X


# -----------------------------  MAIN -----------------------------
# ======================================================================
# Read the catalog
# ======================================================================
# Read Gaia DR2 IERS quasar data
gdr2 = read_dr2_iers()

# Read ICRF1 catalog
icrf1 = read_icrf1()

# Read ICRF2 catalog
icrf2 = read_icrf2()

# Read ICRF3 S/X catalog
icrf3sx = read_icrf3(wv="sx")

# Read ICRF3 K catalog
icrf3k = read_icrf3(wv="k")

# Read ICRF3 S/X catalog
icrf3xka = read_icrf3(wv="xka")
Exemplo n.º 2
0
# Median error
me_ra_i3k = np.median(icrf3k["ra_err"]) * 1.e3
me_dec_i3k = np.median(icrf3k["dec_err"]) * 1.e3
me_pos_i3k = np.median(icrf3k["pos_err"]) * 1.e3

# ICRF3 X/Ka catalog
icrf3xka = read_icrf3(wv="xka")

# Median error
me_ra_i3xka = np.median(icrf3xka["ra_err"]) * 1.e3
me_dec_i3xka = np.median(icrf3xka["dec_err"]) * 1.e3
me_pos_i3xka = np.median(icrf3xka["pos_err"]) * 1.e3

# Gaia DR2 aux_iers catalog
gaiadr2 = read_dr2_iers()
# Bright sample
gaiadr2 = gaiadr2[gaiadr2["phot_g_mean_mag"] < 18.7]

# Median error
me_ra_g2 = np.median(gaiadr2["ra_err"]) * 1.e3
me_dec_g2 = np.median(gaiadr2["dec_err"]) * 1.e3
me_pos_g2 = np.median(gaiadr2["pos_err"]) * 1.e3

# Plot for median error
fig, ax = plt.subplots()
barwidth = 0.25

# data
catalogs = ["GAIA DR2", "ICRF1", "ICRF2", "ICRF3 S/X", "ICRF3 K", "ICRF3 X/KA"]
ra_pos = np.arange(len(catalogs)) - barwidth