Exemplo n.º 1
0
    def test_iou_0_dim_cuda(self):
        boxes1 = torch.rand(0, 5, dtype=torch.float32)
        boxes2 = torch.rand(10, 5, dtype=torch.float32)
        expected_ious = torch.zeros(0, 10, dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))

        boxes1 = torch.rand(10, 5, dtype=torch.float32)
        boxes2 = torch.rand(0, 5, dtype=torch.float32)
        expected_ious = torch.zeros(10, 0, dtype=torch.float32)
        ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
        self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 2
0
 def test_iou_half_overlap_cuda(self):
     boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32)
     boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]],
                           dtype=torch.float32)
     expected_ious = torch.tensor([[0.5]], dtype=torch.float32)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 3
0
 def test_iou_perpendicular_cuda(self):
     boxes1 = torch.tensor([[5, 5, 10.0, 6, 55]], dtype=torch.float32)
     boxes2 = torch.tensor([[5, 5, 10.0, 6, -35]], dtype=torch.float32)
     iou = (6.0 * 6.0) / (6.0 * 6.0 + 4.0 * 6.0 + 4.0 * 6.0)
     expected_ious = torch.tensor([[iou]], dtype=torch.float32)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 4
0
 def test_iou_precision_cuda(self):
     boxes1 = torch.tensor([[565, 565, 10, 10, 0]], dtype=torch.float32)
     boxes2 = torch.tensor([[565, 565, 10, 8.3, 0]], dtype=torch.float32)
     iou = 8.3 / 10.0
     expected_ious = torch.tensor([[iou]], dtype=torch.float32)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 5
0
 def test_iou_large_close_boxes_cuda(self):
     boxes1 = torch.tensor(
         [[299.500000, 417.370422, 600.000000, 364.259186, 27.1828]],
         dtype=torch.float32)
     boxes2 = torch.tensor(
         [[299.500000, 417.370422, 600.000000, 364.259155, 27.1828]],
         dtype=torch.float32)
     iou = 364.259155 / 364.259186
     expected_ious = torch.tensor([[iou]], dtype=torch.float32)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     assert torch.allclose(ious_cuda.cpu(), expected_ious)
Exemplo n.º 6
0
 def test_iou_large_close_boxes_cpu(self):
     boxes1 = torch.tensor(
         [[299.500000, 417.370422, 600.000000, 364.259186, 27.1828]],
         dtype=torch.float32)
     boxes2 = torch.tensor(
         [[299.500000, 417.370422, 600.000000, 364.259155, 27.1828]],
         dtype=torch.float32)
     iou = 364.259155 / 364.259186
     expected_ious = torch.tensor([[iou]], dtype=torch.float32)
     ious = pairwise_iou_rotated(boxes1, boxes2)
     self.assertTrue(torch.allclose(ious, expected_ious))
Exemplo n.º 7
0
 def test_iou_45_degrees_cuda(self):
     boxes1 = torch.tensor(
         [
             [1, 1, math.sqrt(2), math.sqrt(2), 45],
             [1, 1, 2 * math.sqrt(2), 2 * math.sqrt(2), -45],
         ],
         dtype=torch.float32,
     )
     boxes2 = torch.tensor([[1, 1, 2, 2, 0]], dtype=torch.float32)
     expected_ious = torch.tensor([[0.5], [0.5]], dtype=torch.float32)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 8
0
 def test_iou_45_degrees_cpu(self):
     boxes1 = torch.tensor(
         [
             [1, 1, math.sqrt(2), math.sqrt(2), 45],
             [1, 1, 2 * math.sqrt(2), 2 * math.sqrt(2), -45],
         ],
         dtype=torch.float32,
     )
     boxes2 = torch.tensor([[1, 1, 2, 2, 0]], dtype=torch.float32)
     expected_ious = torch.tensor([[0.5], [0.5]], dtype=torch.float32)
     ious = pairwise_iou_rotated(boxes1, boxes2)
     assert torch.allclose(ious, expected_ious)
Exemplo n.º 9
0
def pairwise_iou(boxes1: RotatedBoxes, boxes2: RotatedBoxes) -> None:
    """
    Given two lists of rotated boxes of size N and M,
    compute the IoU (intersection over union)
    between __all__ N x M pairs of boxes.
    The box order must be (x_center, y_center, width, height, angle).

    Args:
        boxes1, boxes2 (RotatedBoxes):
            two `RotatedBoxes`. Contains N & M rotated boxes, respectively.

    Returns:
        Tensor: IoU, sized [N,M].
    """

    return pairwise_iou_rotated(boxes1.tensor, boxes2.tensor)
Exemplo n.º 10
0
 def test_iou_many_boxes_cuda(self):
     num_boxes1 = 100
     num_boxes2 = 200
     boxes1 = torch.stack([
         torch.tensor([5 + 20 * i, 5 + 20 * i, 10, 10, 0],
                      dtype=torch.float32) for i in range(num_boxes1)
     ])
     boxes2 = torch.stack([
         torch.tensor(
             [5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0],
             dtype=torch.float32) for i in range(num_boxes2)
     ])
     expected_ious = torch.zeros(num_boxes1,
                                 num_boxes2,
                                 dtype=torch.float32)
     for i in range(min(num_boxes1, num_boxes2)):
         expected_ious[i][i] = (1 + 9 * i / num_boxes2) / 10.0
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 11
0
 def test_iou_0_degree_cuda(self):
     boxes1 = torch.tensor(
         [[0.5, 0.5, 1.0, 1.0, 0.0], [0.5, 0.5, 1.0, 1.0, 0.0]],
         dtype=torch.float32)
     boxes2 = torch.tensor(
         [
             [0.5, 0.5, 1.0, 1.0, 0.0],
             [0.25, 0.5, 0.5, 1.0, 0.0],
             [0.5, 0.25, 1.0, 0.5, 0.0],
             [0.25, 0.25, 0.5, 0.5, 0.0],
             [0.75, 0.75, 0.5, 0.5, 0.0],
             [1.0, 1.0, 1.0, 1.0, 0.0],
         ],
         dtype=torch.float32,
     )
     expected_ious = torch.tensor(
         [
             [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
             [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
         ],
         dtype=torch.float32,
     )
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
Exemplo n.º 12
0
 def bench():
     for _ in range(n):
         pairwise_iou_rotated(b1, b2)
     if dev.type == "cuda":
         torch.cuda.synchronize()
Exemplo n.º 13
0
 def test_iou_too_many_boxes_cuda(self):
     s1, s2 = 5, 1289035
     boxes1 = torch.zeros(s1, 5)
     boxes2 = torch.zeros(s2, 5)
     ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
     self.assertTupleEqual(tuple(ious_cuda.shape), (s1, s2))