def calc(msg): text = (re.findall(r'(\-*\w+\.*\w*)(?:\s+)*', msg.text)) cmd = (text.pop(0)) if len(text) == 0: send_mess = 'Чтобы воспользоваться коммандой {0} укажите после нее набор чисел'.format( cmd) bot.send_message(msg.chat.id, send_mess) else: if True not in (list(map(str.isalpha, text))): d = list(map(float, text)) if cmd == 'median': bot.send_message(msg.chat.id, "Медиана: {0}".format(str(mymath.median(d)))) if cmd == 'mean': bot.send_message( msg.chat.id, "Среднее значение: {0}".format(str(mymath.mean(d)))) if cmd == 'sko': bot.send_message(msg.chat.id, "СКО: {0}".format(str(mymath.sko(d)))) if cmd == 'cv': bot.send_message(msg.chat.id, "CV: {0} %".format(str(mymath.cv(d)))) if cmd == 'sum': bot.send_message(msg.chat.id, "Сумма: {0}".format(str(sum(d))))
def testMean(self): # - - - - - - - - - - - - - - - - - - - - - - - - - - - """Test 'mean' routine""" for i in self.vectors: m = mymath.mean(i[0]) assert isinstance(m, float), 'Value returned from "mean" is not a float: ' + str(m) assert m == i[1], 'Wrong "mean" with data: ' + str(i[0]) + " (should be: " + str(i[1]) + "): " + str(m)
def any_text(msg): cmd = (re.findall(r'(\-*\w+\.*\w*)(?:\s+)*', msg.text)) if True not in (list(map(str.isalpha, cmd))): d = list(map(float, cmd)) bot.send_message(msg.chat.id, 'N : {0}'.format(str(len(d)))) bot.send_message(msg.chat.id, 'Среднее значение: {0}'.format(str(mymath.mean(d)))) bot.send_message(msg.chat.id, 'СКО: {0}'.format(str(mymath.sko(d)))) bot.send_message( msg.chat.id, "Коэффициент вариации: {0} %".format(str(mymath.cv(d)))) bot.send_message(msg.chat.id, "Медиана: {0}".format(str(mymath.median(d))))
def testMean( self): # - - - - - - - - - - - - - - - - - - - - - - - - - - - """Test 'mean' routine""" for i in self.vectors: m = mymath.mean(i[0]) assert (isinstance(m,float)), \ 'Value returned from "mean" is not a float: '+str(m) assert m == i[1], \ 'Wrong "mean" with data: '+str(i[0])+' (should be: '+str(i[1])+ \ '): '+str(m)
def ss_curve_pos(): global s, e, properties if 'filetosave' in request.files: print('File is come!') for file in request.files: f = request.files[file] extension = re.findall(r'(?:\w+.)(\w+)', f.filename)[0] if f and mkxlsx.allowed_file(extension): f.save( os.path.join(app.config['UPLOAD_FOLDER'], 'upload.' + extension)) if extension == 'xlsx': try: s, e = readxlsx.mk_df(UPLOAD_FOLDER + 'upload.xlsx') except: return json.dumps({'key': 'no_data'}) for key in s.keys(): properties[key] = mymath.s_s_prop( e[key], s[key], 100, 200) print(properties.keys()) return json.dumps({'properties': properties, 'status': 'uploaded'}) elif request.form['key'] == 'request_data': properties[request.form['sample']] = mymath.s_s_prop( e[request.form['sample']], s[request.form['sample']], int(request.form['begin']), int(request.form['end'])) stress = readxlsx.less_lenght(s[request.form['sample']], 100) strain = readxlsx.less_lenght(e[request.form['sample']], 100) stress_reg = np.linspace(0, max(stress) * 1.1, 10) strain_reg = ((stress_reg - properties[request.form['sample']]['intercept']) \ / properties[request.form['sample']]['slope']) strain_reg = list(strain_reg) stress_reg = list(stress_reg) return json.dumps({ 'properties': properties, 'strain': strain, 'stress': stress, 'strain_reg': strain_reg, 'stress_reg': stress_reg, 'key': 'data' }) elif request.form['key'] == 'reload_data': for sample in s.keys(): properties[sample] = mymath.s_s_prop(e[sample], s[sample], int(request.form['begin']), int(request.form['end'])) return json.dumps({'properties': properties, 'key': 'properties'}) elif request.form['key'] == 'stats': stats = {} props = {} for sample in properties.keys(): for p in properties[sample]: if p in props.keys(): props[p].append(properties[sample][p]) else: props[p] = [] props[p].append(properties[sample][p]) for prop in [ 'ultimate', 'modulus', 'proportional', 'yield', 'extension' ]: stats[prop] = {} stats[prop]['Макс'] = mymath.round_step(max(props[prop]), 0.1) stats[prop]['Мин'] = mymath.round_step(min(props[prop]), 0.1) stats[prop]['Сред.'] = mymath.round_step(mymath.mean(props[prop]), 0.1) stats[prop]['СКО'] = mymath.round_step(mymath.sko(props[prop]), 0.1) stats[prop]['CV, %'] = mymath.round_step(mymath.cv(props[prop]), 0.1) return json.dumps({'stats': stats, 'key': 'stats'})
file = open('maria.txt', 'r') except FileNotFoundError: print('file not found!') else: s = file.read() file.close() # from mymath import arithmetic arithmetic.add(1, 3) import mymath mymath.add(1, 3) mymath.mean([1, 2, 3, 4, 5]) from mymath import pi pi # joinstr_list = ['^(N_)?(\(주\)|주식회사|\(?주\)한무쇼핑|주\)|한무쇼핑\(주\))?(.*)(매장|-)', \ '^(N_)?(\(주\)|주식회사|\(?주\)한무쇼핑|주\)|한무쇼핑\(주\))?(.*)'] id_list = ['로라메르시에', '엘리자베스아덴', '르라보', '킬리안', '하이코스', '비디비치', \ '숨', '산타마리아노벨라', '오리진스', '라메르', '달팡', '그라운드플랜', '데코르테', \ '동인비', '톰포드뷰티', '에르메스퍼퓸', '라페르바', '불리1803', '끌레드뽀보떼', 'RMK', '구딸파리', \ '시슬리화장품', '지방시뷰티', '라프레리'] complete_str_list = []