Exemplo n.º 1
0
 def equal(self):
     """
     Test of __eq__ operators
     """
     a1 = myokit.Number(4)
     a2 = myokit.Number(5)
     self.assertEqual(a1, a1)
     self.assertEqual(a1, myokit.Number(4))
     self.assertEqual(a1, myokit.Number(4.0))
     self.assertNotEqual(a1, a2)
     b1 = myokit.Name('test')
     b2 = myokit.Name('tost')
     self.assertEqual(b1, b1)
     self.assertNotEqual(b1, b2)
     c1 = myokit.PrefixPlus(a1)
     c2 = myokit.PrefixPlus(a1)
     self.assertEqual(c1, c1)
     self.assertEqual(c1, c2)
     c2 = myokit.PrefixPlus(a2)
     self.assertNotEqual(c1, c2)
     d1 = myokit.Plus(a1, a2)
     d2 = myokit.Plus(a1, a2)
     self.assertEqual(d1, d1)
     self.assertEqual(d1, d2)
     d2 = myokit.Plus(a2, a1)
     self.assertNotEqual(d2, d1)
     e1 = myokit.Sqrt(a1)
     e2 = myokit.Sqrt(a1)
     self.assertEqual(e1, e1)
     self.assertEqual(e1, e2)
     e2 = myokit.Sqrt(a2)
     self.assertNotEqual(e1, e2)
Exemplo n.º 2
0
def _add_dose_compartment(model, drug_amount, time_unit):
    """
    Adds a dose compartment to the model with a linear absorption rate to
    the connected compartment.
    """
    # Add a dose compartment to the model
    dose_comp = model.add_component_allow_renaming('dose')

    # Create a state variable for the drug amount in the dose compartment
    dose_drug_amount = dose_comp.add_variable('drug_amount')
    dose_drug_amount.set_rhs(0)
    dose_drug_amount.set_unit(drug_amount.unit())
    dose_drug_amount.promote()

    # Create an absorption rate variable
    absorption_rate = dose_comp.add_variable('absorption_rate')
    absorption_rate.set_rhs(1)
    absorption_rate.set_unit(1 / time_unit)

    # Add outflow expression to dose compartment
    dose_drug_amount.set_rhs(
        myokit.Multiply(myokit.PrefixMinus(myokit.Name(absorption_rate)),
                        myokit.Name(dose_drug_amount)))

    # Add inflow expression to connected compartment
    rhs = drug_amount.rhs()
    drug_amount.set_rhs(
        myokit.Plus(
            rhs,
            myokit.Multiply(myokit.Name(absorption_rate),
                            myokit.Name(dose_drug_amount))))

    return dose_drug_amount
Exemplo n.º 3
0
    def test_arithmetic(self):
        # Test basic arithmetic

        a = myokit.Name(self.avar)
        b = myokit.Number('12', 'pF')
        ca = '<ci>a</ci>'
        cb = ('<cn cellml:units="picofarad">12.0</cn>')

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertWrite(x, '<apply><plus/>' + cb + '</apply>')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertWrite(x, '<apply><minus/>' + cb + '</apply>')

        # Plus
        x = myokit.Plus(a, b)
        self.assertWrite(x, '<apply><plus/>' + ca + cb + '</apply>')
        # Minus
        x = myokit.Minus(a, b)
        self.assertWrite(x, '<apply><minus/>' + ca + cb + '</apply>')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertWrite(x, '<apply><times/>' + ca + cb + '</apply>')
        # Divide
        x = myokit.Divide(a, b)
        self.assertWrite(x, '<apply><divide/>' + ca + cb + '</apply>')
Exemplo n.º 4
0
def create_dimless_tumour_growth_model():
    r"""
    Returns a tumour growth myokit model.

    .. math::
        \frac{\text{d}v}{\text{d}\tau} = \frac{a_1 v}
        {v + a_0},

    where the tumour volume :math:`v` and time :math:`\tau` are dimensionless
    and measured in characteristic scales :math:`V^c_T` and :math:`t^c`.
    The model parameters :math:`a_0` and :math:`a_1` are also dimensionless.
    """
    # Instantiate model
    model = Model()

    # Add central compartment
    central_comp = model.add_compartment('central')

    # Add tumour growth variables to central compartment
    volume_t = central_comp.add_variable('volume_t')
    a_0 = central_comp.add_variable('a_0')
    a_1 = central_comp.add_variable('a_1')

    # Bind time
    time = central_comp.add_variable('time')
    time.set_binding('time')

    # Set intial values (some default values) and units
    time.set_rhs(0)

    volume_t.set_rhs(0)
    a_0.set_rhs(1)  # Avoid ZeroDivisionError
    a_1.set_rhs(0)

    # Set units
    time.set_unit('dimensionless')

    volume_t.set_unit('dimensionless')
    a_0.set_unit('dimensionless')
    a_1.set_unit('dimensionless')

    # Set rhs of tumor volume
    # dot(volume_t) =
    #  (a_1 * volume_t) /
    #  (volume_t + a_0)
    volume_t.promote()
    volume_t.set_rhs(
        myokit.Divide(myokit.Multiply(myokit.Name(a_1), myokit.Name(volume_t)),
                      myokit.Plus(myokit.Name(volume_t), myokit.Name(a_0))))

    # Validate model
    model.validate()

    # Check units
    model.check_units()

    return model
Exemplo n.º 5
0
    def _test_maths(self, version):
        # Test maths is written (in selected ``version``)

        # Create model
        m1 = cellml.Model('m', version)
        c1 = m1.add_component('c')
        p1 = c1.add_variable('p', 'mole')
        p1.set_initial_value(2)
        q1 = c1.add_variable('q', 'dimensionless')
        r1 = c1.add_variable('r', 'second')
        r1.set_initial_value(0.1)
        t1 = c1.add_variable('t', 'second')
        m1.set_variable_of_integration(t1)

        # Add component without maths
        d1 = m1.add_component('d')
        s1 = d1.add_variable('s', 'volt')
        s1.set_initial_value(1.23)

        # Add two equations
        # Note: Numbers without units become dimensionless in CellML
        eq1 = myokit.Equation(
            myokit.Name(q1),
            myokit.Plus(myokit.Number(3, myokit.units.mole), myokit.Name(p1)))
        er1 = myokit.Equation(myokit.Derivative(myokit.Name(r1)),
                              myokit.Power(myokit.Name(q1), myokit.Number(2)))
        q1.set_equation(eq1)
        r1.set_equation(er1)

        # Write and read
        xml = cellml.write_string(m1)
        m2 = cellml.parse_string(xml)

        # Check results
        p2, q2, r2, s2 = m2['c']['p'], m2['c']['q'], m2['c']['r'], m2['d']['s']
        subst = {
            myokit.Name(p1): myokit.Name(p2),
            myokit.Name(q1): myokit.Name(q2),
            myokit.Name(r1): myokit.Name(r2),
        }
        eq2 = eq1.clone(subst)
        er2 = er1.clone(subst)

        self.assertEqual(q2.equation(), eq2)
        self.assertEqual(r2.equation(), er2)
        self.assertEqual(s2.initial_value(),
                         myokit.Number(1.23, myokit.units.volt))
        self.assertFalse(p2.is_state())
        self.assertFalse(q2.is_state())
        self.assertTrue(r2.is_state())
        self.assertFalse(s2.is_state())
        self.assertIs(m2.variable_of_integration(), m2['c']['t'])
Exemplo n.º 6
0
def _add_dose_rate(compartment, drug_amount, time_unit):
    """
    Adds a dose rate variable to the state variable, which is bound to the
    dosing regimen.
    """
    # Register a dose rate variable to the compartment and bind it to
    # pace, i.e. tell myokit that its value is set by the dosing regimen/
    # myokit.Protocol
    compartment = drug_amount.parent()
    dose_rate = compartment.add_variable_allow_renaming(str('dose_rate'))
    dose_rate.set_binding('pace')

    # Set initial value to 0 and unit to unit of drug amount over unit of
    # time
    dose_rate.set_rhs(0)
    dose_rate.set_unit(drug_amount.unit() / time_unit)

    # Add the dose rate to the rhs of the drug amount variable
    rhs = drug_amount.rhs()
    drug_amount.set_rhs(myokit.Plus(rhs, myokit.Name(dose_rate)))
    def test_arithmetic_binary(self):
        # Tests parsing prefix operators

        # Plus
        a = myokit.Name('a')
        b = myokit.Number(1.0)
        e = myokit.Plus(a, b)
        x = '<apply><plus/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertEqual(self.p(x), e)

        # Minus
        e = myokit.Minus(a, b)
        x = '<apply><minus/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertEqual(self.p(x), e)

        # Multiply
        e = myokit.Multiply(a, b)
        x = '<apply><times/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertEqual(self.p(x), e)

        # Divide
        e = myokit.Divide(a, b)
        x = '<apply><divide/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertEqual(self.p(x), e)

        # No operands
        self.assertRaisesRegex(
            mathml.MathMLError, 'at least one operand', self.p,
            '<apply><times/></apply>')

        # Only one operand
        self.assertRaisesRegex(
            mathml.MathMLError, 'at least two operands', self.p,
            '<apply><times/><cn>1.0</cn></apply>')

        # Several operands
        e = myokit.Multiply(
            myokit.Multiply(myokit.Multiply(a, b), myokit.Number(2)),
            myokit.Number(3))
        x = '<apply><times/><ci>a</ci><cn>1</cn><cn>2</cn><cn>3</cn></apply>'
        self.assertEqual(self.p(x), e)
    def test_arithmetic_binary(self):
        # Tests writing basic arithmetic operators

        a = myokit.Name(self.avar)
        b = myokit.Number('12', 'pF')
        ca = '<mi>c.a</mi>'
        cb = '<mn>12.0</mn>'

        # Plus
        x = myokit.Plus(a, b)
        self.assertWrite(x, '<mrow>' + ca + '<mo>+</mo>' + cb + '</mrow>')

        # Minus
        x = myokit.Minus(a, b)
        self.assertWrite(x, '<mrow>' + ca + '<mo>-</mo>' + cb + '</mrow>')

        # Multiply
        x = myokit.Multiply(a, b)
        self.assertWrite(x, '<mrow>' + ca + '<mo>*</mo>' + cb + '</mrow>')

        # Divide
        x = myokit.Divide(a, b)
        self.assertWrite(x, '<mfrac>' + ca + cb + '</mfrac>')
    def test_arithmetic_binary(self):
        # Tests writing basic arithmetic operators

        # Plus
        a = myokit.Name('a')
        b = myokit.Number(1)
        e = myokit.Plus(a, b)
        x = '<apply><plus/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertWrite(e, x)

        # Minus
        e = myokit.Minus(a, b)
        x = '<apply><minus/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertWrite(e, x)

        # Multiply
        e = myokit.Multiply(a, b)
        x = '<apply><times/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertWrite(e, x)

        # Divide
        e = myokit.Divide(a, b)
        x = '<apply><divide/><ci>a</ci><cn>1.0</cn></apply>'
        self.assertWrite(e, x)
Exemplo n.º 10
0
    def test_move_variable(self):
        # Test the method to move component variables to another component.

        # Create a model
        m = myokit.Model('LotkaVolterra')
        X = m.add_component('X')
        a = X.add_variable('a')
        a.set_rhs(3)
        b = X.add_variable('b')
        b1 = b.add_variable('b1')
        b2 = b.add_variable('b2')
        b1.set_rhs(1)
        b2.set_rhs(
            myokit.Minus(myokit.Minus(myokit.Name(a), myokit.Name(b1)),
                         myokit.Number(1)))
        b.set_rhs(myokit.Plus(myokit.Name(b1), myokit.Name(b2)))
        x = X.add_variable('x')
        x.promote()
        Y = m.add_component('Y')
        c = Y.add_variable('c')
        c.set_rhs(myokit.Minus(myokit.Name(a), myokit.Number(1)))
        d = Y.add_variable('d')
        d.set_rhs(2)
        y = Y.add_variable('y')
        y.promote()
        x.set_rhs(
            myokit.Minus(
                myokit.Multiply(myokit.Name(a), myokit.Name(x)),
                myokit.Multiply(
                    myokit.Multiply(myokit.Name(b), myokit.Name(x)),
                    myokit.Name(y))))
        x.set_state_value(10)
        y.set_rhs(
            myokit.Plus(
                myokit.Multiply(myokit.PrefixMinus(myokit.Name(c)),
                                myokit.Name(y)),
                myokit.Multiply(
                    myokit.Multiply(myokit.Name(d), myokit.Name(x)),
                    myokit.Name(y))))
        y.set_state_value(5)
        Z = m.add_component('Z')
        t = Z.add_variable('total')
        t.set_rhs(myokit.Plus(myokit.Name(x), myokit.Name(y)))
        E = m.add_component('engine')
        time = E.add_variable('time')
        time.set_rhs(0)
        time.set_binding('time')

        # Move time variable into X
        m.validate()  # If not valid, this will raise an exception
        E.move_variable(time, Z)
        m.validate()

        # Can't do it a second time
        self.assertRaises(ValueError, E.move_variable, time, Z)

        # Move to self
        Z.move_variable(time, Z)
        m.validate()
        Z.move_variable(time, Z)
        m.validate()

        # Duplicate variable name
        E.add_variable('time')
        self.assertRaises(myokit.DuplicateName, Z.move_variable, time, E)

        # Create a nested variable by moving
        m = myokit.Model()
        c = m.add_component('c')
        v = c.add_variable('v')
        w = c.add_variable('w')
        self.assertFalse(w.is_nested())
        c.move_variable(w, v)
        self.assertTrue(w.is_nested())
        v.move_variable(w, c)
        self.assertFalse(w.is_nested())

        # State variables can't be made nested
        w.promote(0)
        self.assertRaisesRegex(Exception, 'State variables', c.move_variable,
                               w, v)
Exemplo n.º 11
0
    def test_model_creation(self):
        # Create a model
        m = myokit.Model('LotkaVolterra')

        # Add the first component
        X = m.add_component('X')
        self.assertEqual(X.qname(), 'X')
        self.assertEqual(X.parent(), m)
        self.assertIsInstance(X, myokit.Component)
        self.assertIn(X.qname(), m)
        self.assertEqual(len(m), 1)

        # Add variable a
        self.assertFalse(X.has_variable('a'))
        a = X.add_variable('a')
        self.assertTrue(X.has_variable('a'))
        self.assertEqual(a, a)
        self.assertIsInstance(a, myokit.Variable)
        self.assertEqual(len(X), 1)
        self.assertIn(a.name(), X)
        a.set_rhs(3)
        self.assertFalse(a.is_state())
        self.assertFalse(a.is_intermediary())
        self.assertTrue(a.is_constant())
        self.assertEqual(a.lhs(), myokit.Name(a))
        self.assertEqual(a.rhs(), myokit.Number(3))
        self.assertEqual(a.rhs().eval(), 3)
        self.assertEqual(a.code(), 'a = 3\n')
        self.assertEqual(a.eq().code(), 'X.a = 3')
        self.assertEqual(a.lhs().code(), 'X.a')
        self.assertEqual(a.rhs().code(), '3')
        self.assertEqual(
            a.eq(), myokit.Equation(myokit.Name(a), myokit.Number(3)))

        # Check lhs
        a_name1 = myokit.Name(a)
        a_name2 = myokit.Name(a)
        self.assertEqual(a_name1, a_name1)
        self.assertEqual(a_name2, a_name2)
        self.assertEqual(a_name1, a_name2)
        self.assertEqual(a_name2, a_name1)

        # Add variable b with two temporary variables
        b = X.add_variable('b')
        self.assertIsInstance(b, myokit.Variable)
        self.assertEqual(len(X), 2)
        self.assertIn(b.name(), X)
        self.assertFalse(b.has_variable('b1'))
        b1 = b.add_variable('b1')
        self.assertTrue(b.has_variable('b1'))
        self.assertEqual(len(b), 1)
        self.assertIn(b1.name(), b)
        self.assertIsInstance(b1, myokit.Variable)
        b2 = b.add_variable('b2')
        self.assertEqual(len(b), 2)
        self.assertIn(b2.name(), b)
        self.assertIsInstance(b2, myokit.Variable)
        b1.set_rhs(1)
        b2.set_rhs(
            myokit.Minus(
                myokit.Minus(myokit.Name(a), myokit.Name(b1)),
                myokit.Number(1))
        )
        b.set_rhs(myokit.Plus(myokit.Name(b1), myokit.Name(b2)))
        self.assertEqual(b.rhs().eval(), 2)
        self.assertFalse(b.is_state())
        self.assertFalse(b.is_intermediary())
        self.assertTrue(b.is_constant())
        self.assertEqual(b.lhs(), myokit.Name(b))

        # Add state variable x
        x = X.add_variable('x')
        x.set_rhs(10)
        x.promote()
        self.assertNotEqual(x, X)
        self.assertIsInstance(x, myokit.Variable)
        self.assertEqual(len(X), 3)
        self.assertIn(x.name(), X)
        self.assertTrue(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertFalse(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Derivative(myokit.Name(x)))
        self.assertEqual(x.indice(), 0)

        # Test demoting, promoting
        x.demote()
        self.assertFalse(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertTrue(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Name(x))
        x.promote()
        self.assertTrue(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertFalse(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Derivative(myokit.Name(x)))
        x.demote()
        x.promote()
        x.demote()
        x.promote()
        self.assertTrue(x.is_state())
        self.assertFalse(x.is_intermediary())
        self.assertFalse(x.is_constant())
        self.assertEqual(x.lhs(), myokit.Derivative(myokit.Name(x)))

        # Add second component, variables
        Y = m.add_component('Y')
        self.assertNotEqual(X, Y)
        self.assertEqual(len(m), 2)
        c = Y.add_variable('c')
        c.set_rhs(myokit.Minus(myokit.Name(a), myokit.Number(1)))
        d = Y.add_variable('d')
        d.set_rhs(2)
        y = Y.add_variable('y')
        y.promote()

        # Set rhs for x and y
        x.set_rhs(myokit.Minus(
            myokit.Multiply(myokit.Name(a), myokit.Name(x)),
            myokit.Multiply(
                myokit.Multiply(myokit.Name(b), myokit.Name(x)),
                myokit.Name(y)
            )
        ))
        x.set_state_value(10)
        self.assertEqual(x.rhs().code(), 'X.a * X.x - X.b * X.x * Y.y')
        y.set_rhs(myokit.Plus(
            myokit.Multiply(
                myokit.PrefixMinus(myokit.Name(c)), myokit.Name(y)
            ),
            myokit.Multiply(
                myokit.Multiply(myokit.Name(d), myokit.Name(x)),
                myokit.Name(y)
            )
        ))
        y.set_state_value(5)
        self.assertEqual(y.rhs().code(), '-Y.c * Y.y + Y.d * X.x * Y.y')

        # Add ano component, variables
        Z = m.add_component('Z')
        self.assertNotEqual(X, Z)
        self.assertNotEqual(Y, Z)
        self.assertEqual(len(m), 3)
        t = Z.add_variable('total')
        self.assertEqual(t.name(), 'total')
        self.assertEqual(t.qname(), 'Z.total')
        self.assertEqual(t.qname(X), 'Z.total')
        self.assertEqual(t.qname(Z), 'total')
        t.set_rhs(myokit.Plus(myokit.Name(x), myokit.Name(y)))
        self.assertFalse(t.is_state())
        self.assertFalse(t.is_constant())
        self.assertTrue(t.is_intermediary())
        self.assertEqual(t.rhs().code(), 'X.x + Y.y')
        self.assertEqual(t.rhs().code(X), 'x + Y.y')
        self.assertEqual(t.rhs().code(Y), 'X.x + y')
        self.assertEqual(t.rhs().code(Z), 'X.x + Y.y')

        # Add engine component
        E = m.add_component('engine')
        self.assertNotEqual(X, E)
        self.assertNotEqual(Y, E)
        self.assertNotEqual(Z, E)
        self.assertEqual(len(m), 4)
        time = E.add_variable('time')
        time.set_rhs(0)
        self.assertIsNone(time.binding())
        time.set_binding('time')
        self.assertIsNotNone(time.binding())

        # Check state
        state = [i for i in m.states()]
        self.assertEqual(len(state), 2)
        self.assertIn(x, state)
        self.assertIn(y, state)

        # Test variable iterators
        def has(*v):
            for var in v:
                self.assertIn(var, vrs)
            self.assertEqual(len(vrs), len(v))
        vrs = [i for i in m.variables()]
        has(a, b, c, d, x, y, t, time)
        vrs = [i for i in m.variables(deep=True)]
        has(a, b, c, d, x, y, t, b1, b2, time)
        vrs = [i for i in m.variables(const=True)]
        has(a, b, c, d)
        vrs = [i for i in m.variables(const=True, deep=True)]
        has(a, b, c, d, b1, b2)
        vrs = [i for i in m.variables(const=False)]
        has(x, y, t, time)
        vrs = [i for i in m.variables(const=False, deep=True)]
        has(x, y, t, time)
        vrs = [i for i in m.variables(state=True)]
        has(x, y)
        vrs = [i for i in m.variables(state=True, deep=True)]
        has(x, y)
        vrs = [i for i in m.variables(state=False)]
        has(a, b, c, d, t, time)
        vrs = [i for i in m.variables(state=False, deep=True)]
        has(a, b, c, d, t, b1, b2, time)
        vrs = [i for i in m.variables(inter=True)]
        has(t)
        vrs = [i for i in m.variables(inter=True, deep=True)]
        has(t)
        vrs = [i for i in m.variables(inter=False)]
        has(a, b, c, d, x, y, time)
        vrs = [i for i in m.variables(inter=False, deep=True)]
        has(a, b, c, d, x, y, b1, b2, time)
        vrs = list(m.variables(const=True, state=True))
        has()
        vrs = list(m.variables(const=True, state=False))
        has(a, b, c, d)

        # Test sorted variable iteration
        names = [v.name() for v in m.variables(deep=True, sort=True)]
        self.assertEqual(names, [
            'a', 'b', 'b1', 'b2', 'x', 'c', 'd', 'y', 'total', 'time'])

        # Test equation iteration
        # Deeper testing is done when testing the ``variables`` method.
        eq = [eq for eq in X.equations(deep=False)]
        self.assertEqual(len(eq), 3)
        self.assertEqual(len(eq), X.count_equations(deep=False))
        eq = [eq for eq in X.equations(deep=True)]
        self.assertEqual(len(eq), 5)
        self.assertEqual(len(eq), X.count_equations(deep=True))
        eq = [eq for eq in Y.equations(deep=False)]
        self.assertEqual(len(eq), 3)
        self.assertEqual(len(eq), Y.count_equations(deep=False))
        eq = [eq for eq in Y.equations(deep=True)]
        self.assertEqual(len(eq), 3)
        self.assertEqual(len(eq), Y.count_equations(deep=True))
        eq = [eq for eq in Z.equations(deep=False)]
        self.assertEqual(len(eq), 1)
        self.assertEqual(len(eq), Z.count_equations(deep=False))
        eq = [eq for eq in Z.equations(deep=True)]
        self.assertEqual(len(eq), 1)
        self.assertEqual(len(eq), Z.count_equations(deep=True))
        eq = [eq for eq in E.equations(deep=False)]
        self.assertEqual(len(eq), 1)
        eq = [eq for eq in E.equations(deep=True)]
        self.assertEqual(len(eq), 1)
        eq = [eq for eq in m.equations(deep=False)]
        self.assertEqual(len(eq), 8)
        eq = [eq for eq in m.equations(deep=True)]
        self.assertEqual(len(eq), 10)

        # Test dependency mapping
        def has(var, *dps):
            lst = vrs[m.get(var).lhs() if isinstance(var, basestring) else var]
            self.assertEqual(len(lst), len(dps))
            for d in dps:
                d = m.get(d).lhs() if isinstance(d, basestring) else d
                self.assertIn(d, lst)

        vrs = m.map_shallow_dependencies(omit_states=False)
        self.assertEqual(len(vrs), 12)
        has('X.a')
        has('X.b', 'X.b.b1', 'X.b.b2')
        has('X.b.b1')
        has('X.b.b2', 'X.a', 'X.b.b1')
        has('X.x', 'X.a', 'X.b', myokit.Name(x), myokit.Name(y))
        has(myokit.Name(x))
        has('Y.c', 'X.a')
        has('Y.d')
        has('Y.y', 'Y.c', 'Y.d', myokit.Name(x), myokit.Name(y))
        has(myokit.Name(y))
        has('Z.total', myokit.Name(x), myokit.Name(y))
        vrs = m.map_shallow_dependencies()
        self.assertEqual(len(vrs), 10)
        has('X.a')
        has('X.b', 'X.b.b1', 'X.b.b2')
        has('X.b.b1')
        has('X.b.b2', 'X.a', 'X.b.b1')
        has('X.x', 'X.a', 'X.b')
        has('Y.c', 'X.a')
        has('Y.d')
        has('Y.y', 'Y.c', 'Y.d')
        has('Z.total')
        vrs = m.map_shallow_dependencies(collapse=True)
        self.assertEqual(len(vrs), 8)
        has('X.a')
        has('X.b', 'X.a')
        has('X.x', 'X.a', 'X.b')
        has('Y.c', 'X.a')
        has('Y.d')
        has('Y.y', 'Y.c', 'Y.d')
        has('Z.total')

        # Validate
        m.validate()

        # Get solvable order
        order = m.solvable_order()
        self.assertEqual(len(order), 5)
        self.assertIn('*remaining*', order)
        self.assertIn('X', order)
        self.assertIn('Y', order)
        self.assertIn('Z', order)

        # Check that X comes before Y
        pos = dict([(name, k) for k, name in enumerate(order)])
        self.assertLess(pos['X'], pos['Y'])
        self.assertEqual(pos['*remaining*'], 4)

        # Check component equation lists
        eqs = order['*remaining*']
        self.assertEqual(len(eqs), 0)
        eqs = order['Z']
        self.assertEqual(len(eqs), 1)
        self.assertEqual(eqs[0].code(), 'Z.total = X.x + Y.y')
        eqs = order['Y']
        self.assertEqual(len(eqs), 3)
        self.assertEqual(
            eqs[2].code(), 'dot(Y.y) = -Y.c * Y.y + Y.d * X.x * Y.y')
        eqs = order['X']
        self.assertEqual(len(eqs), 5)
        self.assertEqual(eqs[0].code(), 'X.a = 3')
        self.assertEqual(eqs[1].code(), 'b1 = 1')
        self.assertEqual(eqs[2].code(), 'b2 = X.a - b1 - 1')
        self.assertEqual(eqs[3].code(), 'X.b = b1 + b2')

        # Test model export and cloning
        code1 = m.code()
        code2 = m.clone().code()
        self.assertEqual(code1, code2)
Exemplo n.º 12
0
    def test_all(self):
        w = myokit.formats.ewriter('easyml')

        model = myokit.Model()
        component = model.add_component('c')
        avar = component.add_variable('a')

        # Name
        a = myokit.Name(avar)
        self.assertEqual(w.ex(a), 'c.a')
        # Number with unit
        b = myokit.Number('12', 'pF')
        self.assertEqual(w.ex(b), '12.0')
        # Integer
        c = myokit.Number(1)
        self.assertEqual(w.ex(c), '1.0')
        # Integer

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(w.ex(x), '12.0')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertEqual(w.ex(x), '(-12.0)')

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(w.ex(x), 'c.a + 12.0')
        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(w.ex(x), 'c.a - 12.0')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(w.ex(x), 'c.a * 12.0')
        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(w.ex(x), 'c.a / 12.0')

        # Quotient
        x = myokit.Quotient(a, b)
        with WarningCollector() as c:
            self.assertEqual(w.ex(x), 'floor(c.a / 12.0)')
        # Remainder
        x = myokit.Remainder(a, b)
        with WarningCollector() as c:
            self.assertEqual(w.ex(x), 'c.a - 12.0 * (floor(c.a / 12.0))')

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(w.ex(x), 'pow(c.a, 12.0)')
        # Sqrt
        x = myokit.Sqrt(b)
        self.assertEqual(w.ex(x), 'sqrt(12.0)')
        # Exp
        x = myokit.Exp(a)
        self.assertEqual(w.ex(x), 'exp(c.a)')
        # Log(a)
        x = myokit.Log(b)
        self.assertEqual(w.ex(x), 'log(12.0)')
        # Log(a, b)
        x = myokit.Log(a, b)
        self.assertEqual(w.ex(x), '(log(c.a) / log(12.0))')
        # Log10
        x = myokit.Log10(b)
        self.assertEqual(w.ex(x), 'log10(12.0)')

        # Sin
        with WarningCollector() as c:
            x = myokit.Sin(b)
            self.assertEqual(w.ex(x), 'sin(12.0)')
            # Cos
            x = myokit.Cos(b)
            self.assertEqual(w.ex(x), 'cos(12.0)')
            # Tan
            x = myokit.Tan(b)
            self.assertEqual(w.ex(x), 'tan(12.0)')
            # ASin
            x = myokit.ASin(b)
            self.assertEqual(w.ex(x), 'asin(12.0)')
            # ACos
            x = myokit.ACos(b)
            self.assertEqual(w.ex(x), 'acos(12.0)')
            # ATan
            x = myokit.ATan(b)
            self.assertEqual(w.ex(x), 'atan(12.0)')

        with WarningCollector() as c:
            # Floor
            x = myokit.Floor(b)
            self.assertEqual(w.ex(x), 'floor(12.0)')
            # Ceil
            x = myokit.Ceil(b)
            self.assertEqual(w.ex(x), 'ceil(12.0)')
            # Abs
            x = myokit.Abs(b)
            self.assertEqual(w.ex(x), 'fabs(12.0)')

        # Equal
        x = myokit.Equal(a, b)
        self.assertEqual(w.ex(x), '(c.a == 12.0)')
        # NotEqual
        x = myokit.NotEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a != 12.0)')
        # More
        x = myokit.More(a, b)
        self.assertEqual(w.ex(x), '(c.a > 12.0)')
        # Less
        x = myokit.Less(a, b)
        self.assertEqual(w.ex(x), '(c.a < 12.0)')
        # MoreEqual
        x = myokit.MoreEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a >= 12.0)')
        # LessEqual
        x = myokit.LessEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a <= 12.0)')

        # Not
        cond1 = myokit.parse_expression('5 > 3')
        cond2 = myokit.parse_expression('2 < 1')
        x = myokit.Not(cond1)
        self.assertEqual(w.ex(x), '!((5.0 > 3.0))')
        # And
        x = myokit.And(cond1, cond2)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) and (2.0 < 1.0))')
        # Or
        x = myokit.Or(cond1, cond2)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) or (2.0 < 1.0))')

        # If
        x = myokit.If(cond1, a, b)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) ? c.a : 12.0)')
        # Piecewise
        c = myokit.Number(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        self.assertEqual(w.ex(x),
                         '((5.0 > 3.0) ? c.a : ((2.0 < 1.0) ? 12.0 : 1.0))')

        # Test without a Myokit expression
        self.assertRaisesRegex(ValueError, 'Unknown expression type', w.ex, 7)
Exemplo n.º 13
0
    def model(self, E=-88, g=1, component='ikr', current='IKr'):
        m = myokit.Model()

        # Add time variable
        ce = m.add_component('engine')
        t = ce.add_variable('time')
        t.set_rhs(0)
        t.set_binding('time')

        p = ce.add_variable('pace')
        p.set_rhs(0)
        p.set_binding('pace')

        # Add membrane potential variable
        cm = m.add_component('membrane')
        v = cm.add_variable('V')
        v.set_rhs(-80)#-80
        v.set_label('membrane_potential')

        # Add current component
        cc = m.add_component(component)
        cc.add_alias('V', v)

        # Add parameters
        i = 0
        pvars = []
        for rate in self.rates:
            i += 1
            p = cc.add_variable('p' + str(i))
            p.set_rhs(rate.alpha)
            pvars.append(p)
            i += 1
            p = cc.add_variable('p' + str(i))
            p.set_rhs(rate.beta)
            pvars.append(p)
        i += 1
        p = cc.add_variable('p' + str(i))
        p.set_rhs(myokit.Number(g))
        pvars.append(p)

        # Add rates, store in map from names to variables
        rvars = {}
        for i, rate in enumerate(self.rates):
            var = cc.add_variable(rate.name)
            rvars[rate.name] = var

            # Generate term a * exp(+-b * V)
            alpha = myokit.Name(pvars[2 * i])
            beta = myokit.Name(pvars[1 + 2 * i])
            if not rate.positive:
                beta = myokit.PrefixMinus(beta)
            var.set_rhs(myokit.Multiply(
                alpha, myokit.Exp(myokit.Multiply(beta, myokit.Name(v)))))

        # Add reversal potential variable
        e = cc.add_variable('E')
        e.set_rhs(myokit.Number(E))

        # Add maximum conductance variable
        g = cc.add_variable('g')
        g.set_rhs(myokit.Name(p))

        # Create states, store in map from names to variables
        svars = {}
        for i, state in enumerate(self.states):
            var = cc.add_variable(state.name)
            if i==0: # Add initial condition of all probability in first state.
                var.promote(1)
            else:
                var.promote(0)
            svars[state.name] = var

        # Set equations for states
        for state in self.states:

            incoming = []
            outgoing = []
            for edge in self.edges:
                # Gather info
                if state == edge.state_from:
                    # Edge from this state to other state
                    state2 = edge.state_to
                    rate_in = edge.backward_rate
                    rate_out = edge.forward_rate
                    mult_in = edge.backward_multiplier
                    mult_out = edge.forward_multiplier
                elif state == edge.state_to:
                    # Edge from other state to this state
                    state2 = edge.state_from
                    rate_in = edge.forward_rate
                    rate_out = edge.backward_rate
                    mult_in = edge.forward_multiplier
                    mult_out = edge.backward_multiplier
                else:
                    continue

                # Add incoming term
                term = myokit.Name(svars[state2.name])
                term = myokit.Multiply(
                    myokit.Name(rvars[rate_in.name]), term)
                if mult_in != 1:
                    term = myokit.Multiply(myokit.Number(mult_in), term)
                incoming.append(term)

                # Add outgoing term
                term = myokit.Name(rvars[rate_out.name])
                if mult_out != 1:
                    term = myokit.Multiply(myokit.Number(mult_out), term)
                outgoing.append(term)

            # Start with outgoing terms (grouped)
            outgoing = iter(outgoing)
            rhs = next(outgoing)
            for term in outgoing:
                rhs = myokit.Plus(rhs, term)
            rhs = myokit.PrefixMinus(rhs)
            rhs = myokit.Multiply(rhs, myokit.Name(svars[state.name]))

            # Add incoming terms (one by one)
            incoming = iter(incoming)
            for term in incoming:
                rhs = myokit.Plus(rhs, term)

            # Set rhs
            svars[state.name].set_rhs(rhs)

        # Add current variable
        var = cc.add_variable(current)
        rhs = myokit.Name(g)
        for state in self.states:
            if state.conducting:
                rhs = myokit.Multiply(rhs, myokit.Name(svars[state.name]))
        rhs = myokit.Multiply(
            rhs, myokit.Minus(myokit.Name(v), myokit.Name(e)))
        var.set_rhs(rhs)

        print(m.code())
        return m
Exemplo n.º 14
0
    def test_all(self):
        w = myokit.formats.matlab.MatlabExpressionWriter()

        model = myokit.Model()
        component = model.add_component('c')
        avar = component.add_variable('a')

        # Name
        a = myokit.Name(avar)
        self.assertEqual(w.ex(a), 'c.a')
        # Number with unit
        b = myokit.Number('12', 'pF')
        self.assertEqual(w.ex(b), '12.0')

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(w.ex(x), '12.0')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertEqual(w.ex(x), '(-12.0)')

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(w.ex(x), 'c.a + 12.0')
        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(w.ex(x), 'c.a - 12.0')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(w.ex(x), 'c.a * 12.0')
        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(w.ex(x), 'c.a / 12.0')

        # Quotient

        x = myokit.Quotient(a, b)
        self.assertEqual(w.ex(x), 'floor(c.a / 12.0)')
        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(w.ex(x), 'mod(c.a, 12.0)')

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(w.ex(x), 'c.a ^ 12.0')
        # Sqrt
        x = myokit.Sqrt(b)
        self.assertEqual(w.ex(x), 'sqrt(12.0)')
        # Exp
        x = myokit.Exp(a)
        self.assertEqual(w.ex(x), 'exp(c.a)')
        # Log(a)
        x = myokit.Log(b)
        self.assertEqual(w.ex(x), 'log(12.0)')
        # Log(a, b)
        x = myokit.Log(a, b)
        self.assertEqual(w.ex(x), '(log(c.a) / log(12.0))')
        # Log10
        x = myokit.Log10(b)
        self.assertEqual(w.ex(x), 'log10(12.0)')

        # Sin
        x = myokit.Sin(b)
        self.assertEqual(w.ex(x), 'sin(12.0)')
        # Cos
        x = myokit.Cos(b)
        self.assertEqual(w.ex(x), 'cos(12.0)')
        # Tan
        x = myokit.Tan(b)
        self.assertEqual(w.ex(x), 'tan(12.0)')
        # ASin
        x = myokit.ASin(b)
        self.assertEqual(w.ex(x), 'asin(12.0)')
        # ACos
        x = myokit.ACos(b)
        self.assertEqual(w.ex(x), 'acos(12.0)')
        # ATan
        x = myokit.ATan(b)
        self.assertEqual(w.ex(x), 'atan(12.0)')

        # Floor
        x = myokit.Floor(b)
        self.assertEqual(w.ex(x), 'floor(12.0)')
        # Ceil
        x = myokit.Ceil(b)
        self.assertEqual(w.ex(x), 'ceil(12.0)')
        # Abs
        x = myokit.Abs(b)
        self.assertEqual(w.ex(x), 'abs(12.0)')

        # Equal
        x = myokit.Equal(a, b)
        self.assertEqual(w.ex(x), '(c.a == 12.0)')
        # NotEqual
        x = myokit.NotEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a != 12.0)')
        # More
        x = myokit.More(a, b)
        self.assertEqual(w.ex(x), '(c.a > 12.0)')
        # Less
        x = myokit.Less(a, b)
        self.assertEqual(w.ex(x), '(c.a < 12.0)')
        # MoreEqual
        x = myokit.MoreEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a >= 12.0)')
        # LessEqual
        x = myokit.LessEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a <= 12.0)')

        # Not
        cond1 = myokit.parse_expression('5 > 3')
        cond2 = myokit.parse_expression('2 < 1')
        x = myokit.Not(cond1)
        self.assertEqual(w.ex(x), '!((5.0 > 3.0))')
        # And
        x = myokit.And(cond1, cond2)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) && (2.0 < 1.0))')
        # Or
        x = myokit.Or(cond1, cond2)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) || (2.0 < 1.0))')

        # If (custom function)
        x = myokit.If(cond1, a, b)
        self.assertEqual(w.ex(x), 'ifthenelse((5.0 > 3.0), c.a, 12.0)')
        # Piecewise
        c = myokit.Number(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        self.assertEqual(
            w.ex(x),
            'ifthenelse((5.0 > 3.0), c.a, ifthenelse((2.0 < 1.0), 12.0, 1.0))')

        # Test fetching using ewriter method
        w = myokit.formats.ewriter('matlab')
        self.assertIsInstance(w, myokit.formats.matlab.MatlabExpressionWriter)

        # Test without a Myokit expression
        self.assertRaisesRegex(ValueError, 'Unknown expression type', w.ex, 7)
Exemplo n.º 15
0
    def test_all(self):
        w = myokit.formats.python.PythonExpressionWriter()

        model = myokit.Model()
        component = model.add_component('c')
        avar = component.add_variable('a')

        # Name
        a = myokit.Name(avar)
        self.assertEqual(w.ex(a), 'c.a')
        # Number with unit
        b = myokit.Number('12', 'pF')
        self.assertEqual(w.ex(b), '12.0')

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(w.ex(x), '12.0')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertEqual(w.ex(x), '(-12.0)')

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(w.ex(x), 'c.a + 12.0')
        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(w.ex(x), 'c.a - 12.0')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(w.ex(x), 'c.a * 12.0')
        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(w.ex(x), 'c.a / 12.0')

        # Quotient
        x = myokit.Quotient(a, b)
        self.assertEqual(w.ex(x), 'c.a // 12.0')
        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(w.ex(x), 'c.a % 12.0')

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(w.ex(x), 'c.a ** 12.0')
        # Sqrt
        x = myokit.Sqrt(b)
        self.assertEqual(w.ex(x), 'math.sqrt(12.0)')
        # Exp
        x = myokit.Exp(a)
        self.assertEqual(w.ex(x), 'math.exp(c.a)')
        # Log(a)
        x = myokit.Log(b)
        self.assertEqual(w.ex(x), 'math.log(12.0)')
        # Log(a, b)
        x = myokit.Log(a, b)
        self.assertEqual(w.ex(x), 'math.log(c.a, 12.0)')
        # Log10
        x = myokit.Log10(b)
        self.assertEqual(w.ex(x), 'math.log10(12.0)')

        # Sin
        x = myokit.Sin(b)
        self.assertEqual(w.ex(x), 'math.sin(12.0)')
        # Cos
        x = myokit.Cos(b)
        self.assertEqual(w.ex(x), 'math.cos(12.0)')
        # Tan
        x = myokit.Tan(b)
        self.assertEqual(w.ex(x), 'math.tan(12.0)')
        # ASin
        x = myokit.ASin(b)
        self.assertEqual(w.ex(x), 'math.asin(12.0)')
        # ACos
        x = myokit.ACos(b)
        self.assertEqual(w.ex(x), 'math.acos(12.0)')
        # ATan
        x = myokit.ATan(b)
        self.assertEqual(w.ex(x), 'math.atan(12.0)')

        # Floor
        x = myokit.Floor(b)
        self.assertEqual(w.ex(x), 'math.floor(12.0)')
        # Ceil
        x = myokit.Ceil(b)
        self.assertEqual(w.ex(x), 'math.ceil(12.0)')
        # Abs
        x = myokit.Abs(b)
        self.assertEqual(w.ex(x), 'abs(12.0)')

        # Equal
        x = myokit.Equal(a, b)
        self.assertEqual(w.ex(x), '(c.a == 12.0)')
        # NotEqual
        x = myokit.NotEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a != 12.0)')
        # More
        x = myokit.More(a, b)
        self.assertEqual(w.ex(x), '(c.a > 12.0)')
        # Less
        x = myokit.Less(a, b)
        self.assertEqual(w.ex(x), '(c.a < 12.0)')
        # MoreEqual
        x = myokit.MoreEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a >= 12.0)')
        # LessEqual
        x = myokit.LessEqual(a, b)
        self.assertEqual(w.ex(x), '(c.a <= 12.0)')

        # Not
        cond1 = myokit.parse_expression('5 > 3')
        cond2 = myokit.parse_expression('2 < 1')
        x = myokit.Not(cond1)
        self.assertEqual(w.ex(x), 'not ((5.0 > 3.0))')
        # And
        x = myokit.And(cond1, cond2)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) and (2.0 < 1.0))')
        # Or
        x = myokit.Or(cond1, cond2)
        self.assertEqual(w.ex(x), '((5.0 > 3.0) or (2.0 < 1.0))')

        # If
        x = myokit.If(cond1, a, b)
        self.assertEqual(w.ex(x), '(c.a if (5.0 > 3.0) else 12.0)')
        # Piecewise
        c = myokit.Number(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        self.assertEqual(
            w.ex(x),
            '(c.a if (5.0 > 3.0) else (12.0 if (2.0 < 1.0) else 1.0))')

        # Test fetching using ewriter method
        w = myokit.formats.ewriter('python')
        self.assertIsInstance(w, myokit.formats.python.PythonExpressionWriter)

        # Test lhs method
        w.set_lhs_function(lambda x: 'sheep')
        self.assertEqual(w.ex(a), 'sheep')

        # Test without a Myokit expression
        self.assertRaisesRegex(ValueError, 'Unknown expression type', w.ex, 7)
Exemplo n.º 16
0
    def test_reader_writer(self):
        # Test using the proper reader/writer
        try:
            import sympy as sp
        except ImportError:
            print('Sympy not found, skipping test.')
            return

        # Create writer and reader
        w = mypy.SymPyExpressionWriter()
        r = mypy.SymPyExpressionReader(self._model)

        # Name
        a = self._a
        ca = sp.Symbol('c.a')
        self.assertEqual(w.ex(a), ca)
        self.assertEqual(r.ex(ca), a)

        # Number with unit
        b = myokit.Number('12', 'pF')
        cb = sp.Float(12)
        self.assertEqual(w.ex(b), cb)
        # Note: Units are lost in sympy im/ex-port!
        #self.assertEqual(r.ex(cb), b)

        # Number without unit
        b = myokit.Number('12')
        cb = sp.Float(12)
        self.assertEqual(w.ex(b), cb)
        self.assertEqual(r.ex(cb), b)

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(w.ex(x), cb)
        # Note: Sympy doesn't seem to have a prefix plus
        self.assertEqual(r.ex(cb), b)

        # Prefix minus
        # Note: SymPy treats -x as Mul(NegativeOne, x)
        # But for numbers just returns a number with a negative value
        x = myokit.PrefixMinus(b)
        self.assertEqual(w.ex(x), -cb)
        self.assertEqual(float(r.ex(-cb)), float(x))

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(w.ex(x), ca + cb)
        # Note: SymPy likes to re-order the operands...
        self.assertEqual(float(r.ex(ca + cb)), float(x))

        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(w.ex(x), ca - cb)
        self.assertEqual(float(r.ex(ca - cb)), float(x))

        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(w.ex(x), ca * cb)
        self.assertEqual(float(r.ex(ca * cb)), float(x))

        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(w.ex(x), ca / cb)
        self.assertEqual(float(r.ex(ca / cb)), float(x))

        # Quotient
        x = myokit.Quotient(a, b)
        self.assertEqual(w.ex(x), ca // cb)
        self.assertEqual(float(r.ex(ca // cb)), float(x))

        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(w.ex(x), ca % cb)
        self.assertEqual(float(r.ex(ca % cb)), float(x))

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(w.ex(x), ca**cb)
        self.assertEqual(float(r.ex(ca**cb)), float(x))

        # Sqrt
        x = myokit.Sqrt(a)
        cx = sp.sqrt(ca)
        self.assertEqual(w.ex(x), cx)
        # Note: SymPy converts sqrt to power
        self.assertEqual(float(r.ex(cx)), float(x))

        # Exp
        x = myokit.Exp(a)
        cx = sp.exp(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Log(a)
        x = myokit.Log(a)
        cx = sp.log(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Log(a, b)
        x = myokit.Log(a, b)
        cx = sp.log(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(float(r.ex(cx)), float(x))

        # Log10
        x = myokit.Log10(b)
        cx = sp.log(cb, 10)
        self.assertEqual(w.ex(x), cx)
        self.assertAlmostEqual(float(r.ex(cx)), float(x))

        # Sin
        x = myokit.Sin(a)
        cx = sp.sin(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Cos
        x = myokit.Cos(a)
        cx = sp.cos(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Tan
        x = myokit.Tan(a)
        cx = sp.tan(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # ASin
        x = myokit.ASin(a)
        cx = sp.asin(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # ACos
        x = myokit.ACos(a)
        cx = sp.acos(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # ATan
        x = myokit.ATan(a)
        cx = sp.atan(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Floor
        x = myokit.Floor(a)
        cx = sp.floor(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Ceil
        x = myokit.Ceil(a)
        cx = sp.ceiling(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Abs
        x = myokit.Abs(a)
        cx = sp.Abs(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Equal
        x = myokit.Equal(a, b)
        cx = sp.Eq(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # NotEqual
        x = myokit.NotEqual(a, b)
        cx = sp.Ne(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # More
        x = myokit.More(a, b)
        cx = sp.Gt(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Less
        x = myokit.Less(a, b)
        cx = sp.Lt(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # MoreEqual
        x = myokit.MoreEqual(a, b)
        cx = sp.Ge(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # LessEqual
        x = myokit.LessEqual(a, b)
        cx = sp.Le(ca, cb)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Not
        x = myokit.Not(a)
        cx = sp.Not(ca)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # And
        cond1 = myokit.More(a, b)
        cond2 = myokit.Less(a, b)
        c1 = sp.Gt(ca, cb)
        c2 = sp.Lt(ca, cb)

        x = myokit.And(cond1, cond2)
        cx = sp.And(c1, c2)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Or
        x = myokit.Or(cond1, cond2)
        cx = sp.Or(c1, c2)
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # If
        # Note: sympy only does piecewise, not if
        x = myokit.If(cond1, a, b)
        cx = sp.Piecewise((ca, c1), (cb, True))
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x.piecewise())

        # Piecewise
        c = myokit.Number(1)
        cc = sp.Float(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        cx = sp.Piecewise((ca, c1), (cb, c2), (cc, True))
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Myokit piecewise's (like CellML's) always have a final True
        # condition (i.e. an 'else'). SymPy doesn't require this, so test if
        # we can import this --> It will add an "else 0"
        x = myokit.Piecewise(cond1, a, myokit.Number(0))
        cx = sp.Piecewise((ca, c1))
        self.assertEqual(r.ex(cx), x)

        # SymPy function without Myokit equivalent --> Should raise exception
        cu = sp.principal_branch(cx, cc)
        self.assertRaisesRegex(ValueError, 'Unsupported type', r.ex, cu)

        # Derivative
        m = self._model.clone()
        avar = m.get('c.a')
        r = mypy.SymPyExpressionReader(self._model)
        avar.promote(4)
        x = myokit.Derivative(self._a)
        cx = sp.symbols('dot(c.a)')
        self.assertEqual(w.ex(x), cx)
        self.assertEqual(r.ex(cx), x)

        # Equation
        e = myokit.Equation(a, b)
        ce = sp.Eq(ca, cb)
        self.assertEqual(w.eq(e), ce)
        # There's no backwards equivalent for this!
        # The ereader can handle it, but it becomes and Equals expression.

        # Test sympy division
        del (m, avar, x, cx, e, ce)
        a = self._model.get('c.a')
        b = self._model.get('c').add_variable('bbb')
        b.set_rhs('1 / a')
        e = b.rhs()
        ce = w.ex(b.rhs())
        e = r.ex(ce)
        self.assertEqual(
            e,
            myokit.Multiply(myokit.Number(1),
                            myokit.Power(myokit.Name(a), myokit.Number(-1))))

        # Test sympy negative numbers
        a = self._model.get('c.a')
        e1 = myokit.PrefixMinus(myokit.Name(a))
        ce = w.ex(e1)
        e2 = r.ex(ce)
        self.assertEqual(e1, e2)
Exemplo n.º 17
0
    def test_all(self):
        w = myokit.formats.latex.LatexExpressionWriter()

        model = myokit.Model()
        component = model.add_component('c')
        avar = component.add_variable('a')

        # Model needs to be validated --> sets unames
        avar.set_rhs(12)
        avar.set_binding('time')
        model.validate()

        # Name
        a = myokit.Name(avar)
        self.assertEqual(w.ex(a), '\\text{a}')
        # Number with unit
        b = myokit.Number('12', 'pF')
        self.assertEqual(w.ex(b), '12.0')

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(w.ex(x), '12.0')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertEqual(w.ex(x), '\\left(-12.0\\right)')
        # Prefix minus with bracket
        x = myokit.PrefixMinus(myokit.Plus(a, b))
        self.assertEqual(w.ex(x),
                         '\\left(-\\left(\\text{a}+12.0\\right)\\right)')

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(w.ex(x), '\\text{a}+12.0')
        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(w.ex(x), '\\text{a}-12.0')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(w.ex(x), '\\text{a}*12.0')
        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(w.ex(x), '\\frac{\\text{a}}{12.0}')

        # Quotient
        # Not supported in latex!
        x = myokit.Quotient(a, b)
        self.assertEqual(
            w.ex(x), '\\left\\lfloor\\frac{\\text{a}}{12.0}\\right\\rfloor')
        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(w.ex(x), '\\bmod\\left(\\text{a},12.0\\right)')

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(w.ex(x), '\\text{a}^{12.0}')
        # Power with brackets
        x = myokit.Power(myokit.Plus(a, b), b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}+12.0\\right)^{12.0}')
        # Sqrt
        x = myokit.Sqrt(b)
        self.assertEqual(w.ex(x), '\\sqrt{12.0}')
        # Exp
        x = myokit.Exp(a)
        self.assertEqual(w.ex(x), '\\exp\\left(\\text{a}\\right)')
        # Log(a)
        x = myokit.Log(b)
        self.assertEqual(w.ex(x), '\\log\\left(12.0\\right)')
        # Log(a, b)
        x = myokit.Log(a, b)
        self.assertEqual(w.ex(x), '\\log_{12.0}\\left(\\text{a}\\right)')
        # Log10
        x = myokit.Log10(b)
        self.assertEqual(w.ex(x), '\\log_{10.0}\\left(12.0\\right)')

        # Sin
        x = myokit.Sin(b)
        self.assertEqual(w.ex(x), '\\sin\\left(12.0\\right)')
        # Cos
        x = myokit.Cos(b)
        self.assertEqual(w.ex(x), '\\cos\\left(12.0\\right)')
        # Tan
        x = myokit.Tan(b)
        self.assertEqual(w.ex(x), '\\tan\\left(12.0\\right)')
        # ASin
        x = myokit.ASin(b)
        self.assertEqual(w.ex(x), '\\arcsin\\left(12.0\\right)')
        # ACos
        x = myokit.ACos(b)
        self.assertEqual(w.ex(x), '\\arccos\\left(12.0\\right)')
        # ATan
        x = myokit.ATan(b)
        self.assertEqual(w.ex(x), '\\arctan\\left(12.0\\right)')

        # Floor
        x = myokit.Floor(b)
        self.assertEqual(w.ex(x), '\\left\\lfloor{12.0}\\right\\rfloor')
        # Ceil
        x = myokit.Ceil(b)
        self.assertEqual(w.ex(x), '\\left\\lceil{12.0}\\right\\rceil')
        # Abs
        x = myokit.Abs(b)
        self.assertEqual(w.ex(x), '\\lvert{12.0}\\rvert')

        # Equal
        x = myokit.Equal(a, b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}=12.0\\right)')
        # NotEqual
        x = myokit.NotEqual(a, b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}\\neq12.0\\right)')
        # More
        x = myokit.More(a, b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}>12.0\\right)')
        # Less
        x = myokit.Less(a, b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}<12.0\\right)')
        # MoreEqual
        x = myokit.MoreEqual(a, b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}\\geq12.0\\right)')
        # LessEqual
        x = myokit.LessEqual(a, b)
        self.assertEqual(w.ex(x), '\\left(\\text{a}\\leq12.0\\right)')

        # Not
        cond1 = myokit.parse_expression('5 > 3')
        cond2 = myokit.parse_expression('2 < 1')
        x = myokit.Not(cond1)
        self.assertEqual(w.ex(x), '\\not\\left(\\left(5.0>3.0\\right)\\right)')
        # And
        x = myokit.And(cond1, cond2)
        self.assertEqual(
            w.ex(x), '\\left(\\left(5.0>3.0\\right)\\and'
            '\\left(2.0<1.0\\right)\\right)')
        # Or
        x = myokit.Or(cond1, cond2)
        self.assertEqual(
            w.ex(x), '\\left(\\left(5.0>3.0\\right)\\or'
            '\\left(2.0<1.0\\right)\\right)')
        # If
        x = myokit.If(cond1, a, b)
        self.assertEqual(
            w.ex(x), 'if\\left(\\left(5.0>3.0\\right),\\text{a},12.0\\right)')
        # Piecewise
        c = myokit.Number(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        self.assertEqual(
            w.ex(x), 'piecewise\\left(\\left(5.0>3.0\\right),\\text{a},'
            '\\left(2.0<1.0\\right),12.0,1.0\\right)')

        # Test fetching using ewriter method
        w = myokit.formats.ewriter('latex')
        self.assertIsInstance(w, myokit.formats.latex.LatexExpressionWriter)

        # Test without a Myokit expression
        self.assertRaisesRegex(ValueError, 'Unknown expression type', w.ex, 7)
Exemplo n.º 18
0
def convert_hh_states_to_inf_tau_form(model, v=None):
    """
    Scans a :class:`myokit.Model` for Hodgkin-Huxley style states written in
    "alpha-beta form", and converts them to "inf-tau form".

    For any state ``x`` written in the form
    ``dot(x) = alpha * (1 - x) - beta * x`` this method will calculate the
    steady state and time constant, and add variables for both. Next, the state
    RHS will be replaced by an expression of the form
    ``dot(x) = (x_inf - x) / tau_x``, where ``x_inf`` and ``tau_x`` are the
    new variables.

    See also: :meth:`get_alpha_and_beta()`.

    Arguments:

    ``model``
        A :class:`myokit.Model` object to convert.
    ``v``
        An optional :class:`myokit.Variable`` representing the membrane
        potential. If not given, the method will search for a variable labelled
        ``membrane_potential``. An error is raised if no membrane potential
        variable can be found.

    Returns an updated copy of the given model.
    """
    # Clone the model before editing
    if not isinstance(model, myokit.Model):
        raise ValueError('Given `model` must be a myokit.Model.')
    model = model.clone()

    # Check membrane potential variable is known.
    if v is None:
        v = model.label('membrane_potential')
        if v is None:
            raise ValueError(
                'Membrane potential must be given as `v` or by setting the'
                ' label `membrane_potential` in the model.')
    else:
        # Ensure v is a variable, and from the cloned model
        if isinstance(v, myokit.Variable):
            v = v.qname()
        v = model.get(v)

    # Loop over states
    # - If they're in alpha-beta form, add new (nested) variables inf and tau
    for x in model.states():
        res = get_alpha_and_beta(x, v)
        if res is not None:
            # Create variabless for inf and tau
            a = myokit.Name(res[0])
            b = myokit.Name(res[1])
            tau = x.add_variable_allow_renaming('tau')
            tau.set_rhs(myokit.Divide(myokit.Number(1), myokit.Plus(a, b)))
            inf = x.add_variable_allow_renaming('inf')
            inf.set_rhs(myokit.Multiply(a, myokit.Name(tau)))

            # Update RHS expression for state
            x.set_rhs(
                myokit.Divide(myokit.Minus(myokit.Name(inf), myokit.Name(x)),
                              myokit.Name(tau)))

    return model
Exemplo n.º 19
0
    def test_split_factor(self):
        # Tests _split_factor

        # Load model, to create interesting RHS
        fname = os.path.join(DIR_DATA, 'clancy-1999-fitting.mmt')
        model = myokit.load_model(fname)
        v1 = model.get('ina.C1')
        v2 = model.get('ina.C2')
        v3 = model.get('ina.C3')
        v4 = model.get('ina.IF')

        # Test simplest cases
        v4.set_rhs('C1')
        self.assertEqual(markov._split_factor(v4.rhs(), [v1]),
                         (myokit.Name(v1), myokit.Number(1)))
        v4.set_rhs('+++C1')
        self.assertEqual(markov._split_factor(v4.rhs(), [v1]),
                         (myokit.Name(v1), myokit.Number(1)))
        v4.set_rhs('--C1')
        self.assertEqual(markov._split_factor(v4.rhs(), [v1]),
                         (myokit.Name(v1), myokit.Number(1)))
        v4.set_rhs('---C1')
        self.assertEqual(
            markov._split_factor(v4.rhs(), [v1]),
            (myokit.Name(v1), myokit.PrefixMinus(myokit.Number(1))))

        # Test multiplication
        v4.set_rhs('C1 * 3')
        self.assertEqual(markov._split_factor(v4.rhs(), [v1]),
                         (myokit.Name(v1), myokit.Number(3)))
        v4.set_rhs('C1 * (sqrt(C2) + C3)')
        self.assertEqual(
            markov._split_factor(v4.rhs(), [v1]),
            (myokit.Name(v1),
             myokit.Plus(myokit.Sqrt(myokit.Name(v2)), myokit.Name(v3))))

        # Test division
        v4.set_rhs('C1 / (sqrt(C2) + C3)')
        self.assertEqual(
            markov._split_factor(v4.rhs(), [v1]),
            (myokit.Name(v1),
             myokit.Divide(
                 myokit.Number(1),
                 myokit.Plus(myokit.Sqrt(myokit.Name(v2)), myokit.Name(v3)))))

        # Test division that's not allowed
        v4.set_rhs('(sqrt(C2) + C3) / C1')
        self.assertRaisesRegex(ValueError, r'Non-linear function \(division\)',
                               markov._split_factor, v4.rhs(), [v1])

        # Test with list of variables
        v4.set_rhs('C2 * 3')
        self.assertEqual(markov._split_factor(v4.rhs(), [v1, v2, v3]),
                         (myokit.Name(v2), myokit.Number(3)))

        # Multiple variables is not allowed
        v4.set_rhs('C2 * C1')
        self.assertRaisesRegex(ValueError,
                               'must reference exactly one variable',
                               markov._split_factor, v4.rhs(), [v1, v2, v3])

        # Zero variables is not allowed
        v4.set_rhs('C3')
        self.assertRaisesRegex(ValueError,
                               'must reference exactly one variable',
                               markov._split_factor, v4.rhs(), [v1, v2])

        # Non-linear term is not allowed
        v4.set_rhs('sqrt(C1)')
        self.assertRaisesRegex(ValueError, 'Non-linear function',
                               markov._split_factor, v4.rhs(), [v1, v2])

        # Multiple terms is not allowed
        v4.set_rhs('C2 - C2')
        self.assertRaisesRegex(ValueError, 'must be a single term',
                               markov._split_factor, v4.rhs(), [v1, v2, v3])
Exemplo n.º 20
0
 def _ex_plus(self, e):
     a, b = e.as_two_terms()
     return myokit.Plus(self.ex(a), self.ex(b))
Exemplo n.º 21
0
    def test_remove_variable(self):
        # Test the removal of a variable.

        # Create a model
        m = myokit.Model('LotkaVolterra')

        # Add a variable 'a'
        X = m.add_component('X')

        # Simplest case
        a = X.add_variable('a')
        self.assertEqual(X.count_variables(), 1)
        X.remove_variable(a)
        self.assertEqual(X.count_variables(), 0)
        self.assertRaises(Exception, X.remove_variable, a)

        # Test re-adding
        a = X.add_variable('a')
        a.set_rhs(myokit.Number(5))
        self.assertEqual(X.count_variables(), 1)

        # Test deleting dependent variables
        b = X.add_variable('b')
        self.assertEqual(X.count_variables(), 2)
        b.set_rhs(myokit.Plus(myokit.Number(3), myokit.Name(a)))

        # Test blocking of removal
        self.assertRaises(myokit.IntegrityError, X.remove_variable, a)
        self.assertEqual(X.count_variables(), 2)

        # Test removal in the right order
        X.remove_variable(b)
        self.assertEqual(X.count_variables(), 1)
        X.remove_variable(a)
        self.assertEqual(X.count_variables(), 0)

        # Test reference to current state variable values
        a = X.add_variable('a')
        a.set_rhs(myokit.Number(5))
        a.promote()
        b = X.add_variable('b')
        b.set_rhs(myokit.Plus(myokit.Number(3), myokit.Name(a)))
        self.assertRaises(myokit.IntegrityError, X.remove_variable, a)
        X.remove_variable(b)
        X.remove_variable(a)
        self.assertEqual(X.count_variables(), 0)

        # Test reference to current state variable values with "self"-ref
        a = X.add_variable('a')
        a.promote()
        a.set_rhs(myokit.Name(a))
        X.remove_variable(a)

        # Test it doesn't interfere with normal workings
        a = X.add_variable('a')
        a.promote()
        a.set_rhs(myokit.Name(a))
        b = X.add_variable('b')
        b.set_rhs(myokit.Name(a))
        self.assertRaises(myokit.IntegrityError, X.remove_variable, a)
        X.remove_variable(b)
        X.remove_variable(a)

        # Test reference to dot
        a = X.add_variable('a')
        a.set_rhs(myokit.Number(5))
        a.promote()
        b = X.add_variable('b')
        b.set_rhs(myokit.Derivative(myokit.Name(a)))
        self.assertRaises(myokit.IntegrityError, X.remove_variable, a)
        X.remove_variable(b)
        X.remove_variable(a)

        # Test if orphaned
        self.assertIsNone(b.parent())

        # Test deleting variable with nested variables
        a = X.add_variable('a')
        b = a.add_variable('b')
        b.set_rhs(myokit.Plus(myokit.Number(2), myokit.Number(2)))
        a.set_rhs(myokit.Multiply(myokit.Number(3), myokit.Name(b)))
        self.assertRaises(myokit.IntegrityError, X.remove_variable, a)
        self.assertEqual(a.count_variables(), 1)
        self.assertEqual(X.count_variables(), 1)

        # Test recursive deleting
        X.remove_variable(a, recursive=True)
        self.assertEqual(a.count_variables(), 0)
        self.assertEqual(X.count_variables(), 0)

        # Test deleting variable with nested variables that depend on each
        # other
        a = X.add_variable('a')
        b = a.add_variable('b')
        c = a.add_variable('c')
        d = a.add_variable('d')
        a.set_rhs('b + c - d')
        a.promote(0.1)
        b.set_rhs('2 * a - d')
        c.set_rhs('a + b + d')
        d.set_rhs('3 * a')
        self.assertRaises(myokit.IntegrityError, X.remove_variable, a)
        self.assertEqual(a.count_variables(), 3)
        self.assertEqual(X.count_variables(), 1)
        X.remove_variable(a, recursive=True)
        self.assertEqual(a.count_variables(), 0)
        self.assertEqual(X.count_variables(), 0)

        # Test if removed from model's label and binding lists
        m = myokit.Model()
        c = m.add_component('c')
        x = c.add_variable('x')
        y = c.add_variable('y')
        x.set_rhs(0)
        y.set_rhs(0)
        x.set_binding('time')
        y.set_label('membrane_potential')
        self.assertIs(m.binding('time'), x)
        self.assertIs(m.label('membrane_potential'), y)
        c.remove_variable(x)
        self.assertIs(m.binding('time'), None)
        self.assertIs(m.label('membrane_potential'), y)
        c.remove_variable(y)
        self.assertIs(m.binding('time'), None)
        self.assertIs(m.label('membrane_potential'), None)
Exemplo n.º 22
0
    def set_roa(self, dose_comp, indirect):
        """
        Sets route of administration.

        Arguments:
            dose_comp -- Compartment that is either infused with drug (direct)
                         or connected to the depot compartment (indirect).
            indirect -- Flag whether dose is administered directly (False) into
                        the dose compartment or indriectly (True) through a
                        depot.
        """
        # Check that model contains dose_comp
        if not self._model.has_component(dose_comp):
            raise ValueError

        # Check that dose compartment has a variable called amount
        amount = dose_comp + '.amount'
        if not self._model.has_variable(amount):
            raise ValueError

        # Check that amount is a state variable
        amount = self._model.var(amount)
        if not amount.is_state():
            raise ValueError

        # Check that model has time bound variable
        time = self._model.binding(binding='time')
        if time is None:
            raise ValueError

        # Get amount and time unit from dose compartment
        amount_unit = amount.unit()
        time_unit = time.unit()

        # TODO: Remove previously set roa compartments, variables and
        # expressions.

        # Remember name of dose_comp
        self._dose_comp = dose_comp

        # Get dose compartment object
        dose_comp = self._model.get(dose_comp)

        # Add depot compartment if dose is administered indirectly
        if indirect:
            # Add depot compartment
            depot_comp = self._model.add_component_allow_renaming('depot')

            # Remember name of depot compartment
            self._depot_comp = depot_comp.name()

            # Add drug amount and absorption rate to the depot compartment
            amount_de = depot_comp.add_variable('amount')
            k_a = depot_comp.add_variable('k_a')

            # Set default values for amount and absorption rate
            amount_de.set_rhs(0)
            k_a.set_rhs(0)

            # Set units
            amount_de.set_unit(amount_unit)
            k_a.set_unit(1 / time_unit)

            # Promote amount to state variable
            amount_de.promote()

            # Add outflow expression to depot compartment
            amount_de.set_rhs(
                myokit.Multiply(myokit.PrefixMinus(myokit.Name(k_a)),
                                myokit.Name(amount_de)))

            # Add inflow expression to dose compartment
            expr = amount.rhs()
            amount.set_rhs(
                myokit.Plus(
                    expr,
                    myokit.Multiply(myokit.Name(k_a), myokit.Name(amount_de))))

            # Set the depot to the dose compartment
            dose_comp = depot_comp
            amount = amount_de

            del depot_comp
            del amount_de

        # Add dose rate and regimen variables
        dose_rate = dose_comp.add_variable_allow_renaming('dose_rate')
        regimen = dose_comp.add_variable_allow_renaming('regimen')

        # Remember dose rate variable name
        comp_name = dose_comp.name()
        self._dose_rate = comp_name + '.' + dose_rate.name()

        # Set default values for dose_rate and regimen
        dose_rate.set_rhs(0)
        regimen.set_rhs(0)

        # Set units
        dose_rate.set_unit(amount_unit / time_unit)
        regimen.set_unit('dimensionless')

        # Bind regimen to myokit pacer (so regimen can be adjusted with
        # myokit.Protocol)
        regimen.set_binding('pace')

        # Add dose infusion expression to dose compartment
        expr = amount.rhs()
        amount.set_rhs(
            myokit.Plus(
                expr,
                myokit.Multiply(myokit.Name(dose_rate), myokit.Name(regimen))))

        # Flag route of administration to be set
        self._roa_set = True

        # Check whether a valid model has been created
        self.validate()
Exemplo n.º 23
0
def create_tumour_growth_model():
    r"""
    Returns a tumour growth myokit model.

    .. math::
        \frac{\text{d}V^s_T}{\text{d}t} = \frac{2\lambda _0\lambda _1 V^s_T}
        {2\lambda _0 V^s_T + \lambda _1},

    where the tumour volume :math:`V^s_T` is measured in :math:`\text{cm}^3`,
    the exponential growth rate :math:`\lambda _0` is mesured in
    :math:`\text{day}` and the linear growth rate :math:`\lambda _1` is
    measured in :math:`\text{cm}^3/\text{day}`.
    """
    # Instantiate model
    model = Model()

    # add central compartment
    central_comp = model.add_compartment('central')

    # add tumour growth variables to central compartment
    volume_t = central_comp.add_variable('volume_t')
    lambda_0 = central_comp.add_variable('lambda_0')
    lambda_1 = central_comp.add_variable('lambda_1')

    # bind time
    time = central_comp.add_variable('time')
    time.set_binding('time')

    # set preferred representation of units
    # time in days
    unit = myokit.parse_unit('day')
    myokit.Unit.register_preferred_representation('day', unit)
    # rates in 1 / day
    unit = myokit.parse_unit('1/day')
    myokit.Unit.register_preferred_representation('1/day', unit)
    # tumor volume
    unit = myokit.parse_unit('cm^3')
    myokit.Unit.register_preferred_representation('cm^3', unit)
    # linear growth
    unit = myokit.parse_unit('cm^3/day')
    myokit.Unit.register_preferred_representation('cm^3/day', unit)

    # set intial values (some default values) and units
    time.set_rhs(0)

    volume_t.set_rhs(0)
    lambda_0.set_rhs(0)
    lambda_1.set_rhs(1)  # avoid ZeroDivisionError

    # set units
    time.set_unit('day')  # time in days

    volume_t.set_unit('cm^3')  # milimeter cubed
    lambda_0.set_unit('1 / day')  # per day
    lambda_1.set_unit('cm^3 / day')  # milimiter cubed per day

    # set rhs of tumor volume
    # dot(volume_t) =
    #  (2 * lambda_0 * lambda_1 * volume_t) /
    #  (2 * lambda_0 * volume_t + lambda_1)
    volume_t.promote()
    volume_t.set_rhs(
        myokit.Divide(
            myokit.Multiply(
                myokit.Number(2),
                myokit.Multiply(
                    myokit.Name(lambda_0),
                    myokit.Multiply(myokit.Name(lambda_1),
                                    myokit.Name(volume_t)))),
            myokit.Plus(
                myokit.Multiply(
                    myokit.Number(2),
                    myokit.Multiply(myokit.Name(lambda_0),
                                    myokit.Name(volume_t))),
                myokit.Name(lambda_1))))

    # Validate model
    model.validate()

    # TODO: Check units
    # model.check_units()

    return model
Exemplo n.º 24
0
def create_pktgi_model():
    """
    Returns 1 compartmental PK model.
    """
    # Instantiate model
    model = Model()

    # Add central compartment
    central_comp = model.add_compartment('central')

    # Add PK variables and constants to central compartment
    amount = central_comp.add_variable('amount')
    volume_c = central_comp.add_variable('volume_c')
    k_e = central_comp.add_variable('k_e')
    conc = central_comp.add_variable('conc')

    # add PD variables to central compartment
    volume_t = central_comp.add_variable('volume_t')
    lambda_0 = central_comp.add_variable('lambda_0')
    lambda_1 = central_comp.add_variable('lambda_1')
    kappa = central_comp.add_variable('kappa')

    # bind time
    time = central_comp.add_variable('time')
    time.set_binding('time')

    # set intial values (some default values)
    time.set_rhs(0)

    amount.set_rhs(0)
    volume_c.set_rhs(1)  # avoid ZeroDivisionError
    k_e.set_rhs(0)
    conc.set_rhs(0)

    volume_t.set_rhs(0)
    lambda_0.set_rhs(0)
    lambda_1.set_rhs(1)  # avoid ZeroDivisionError
    kappa.set_rhs(0)

    # set units
    time.set_unit('day')  # time in days

    amount.set_unit('mg')  # miligram
    volume_c.set_unit('L')  # liter
    k_e.set_unit('1 / day')  # 1 / day
    conc.set_unit('mg / L')  # miligram / liter

    volume_t.set_unit('cm^3')  # milimeter cubed
    lambda_0.set_unit('1 / day')  # per day
    lambda_1.set_unit('cm^3 / day')  # milimiter cubed per day
    kappa.set_unit('L / mg / day')  # in reference L / ug / day,

    # set preferred representation of units
    # time days
    unit = myokit.parse_unit('day')
    myokit.Unit.register_preferred_representation('day', unit)
    # rates in 1 / day
    unit = myokit.parse_unit('1/day')
    myokit.Unit.register_preferred_representation('1/day', unit)
    # amount in mg
    unit = myokit.parse_unit('mg')
    myokit.Unit.register_preferred_representation('mg', unit)
    # dose rate in mg / day
    unit = myokit.parse_unit('mg/day')
    myokit.Unit.register_preferred_representation('mg/day', unit)
    # concentration mg / L
    unit = myokit.parse_unit('mg/L')
    myokit.Unit.register_preferred_representation('mg/L', unit)

    # tumor volume
    unit = myokit.parse_unit('cm^3')
    myokit.Unit.register_preferred_representation('cm^3', unit)
    # linear growth
    unit = myokit.parse_unit('cm^3/day')
    myokit.Unit.register_preferred_representation('cm^3/day', unit)
    # potency
    unit = myokit.parse_unit('L/mg/day')
    myokit.Unit.register_preferred_representation('L/mg/day', unit)

    # set rhs of drug amount
    # (dot(amount) = - k_e * amount)
    amount.promote()
    amount.set_rhs(
        myokit.Multiply(myokit.PrefixMinus(myokit.Name(k_e)),
                        myokit.Name(amount)))

    # set rhs of tumor volume
    # dot(volume_t) =
    #  (2 * lambda_0 * lambda_1 * volume_t) /
    #  (2 * lambda_0 * volume_t + lambda_1) -
    #  kappa * conc * volume_t
    volume_t.promote()
    volume_t.set_rhs(
        myokit.Minus(
            myokit.Divide(
                myokit.Multiply(
                    myokit.Number(2),
                    myokit.Multiply(
                        myokit.Name(lambda_0),
                        myokit.Multiply(myokit.Name(lambda_1),
                                        myokit.Name(volume_t)))),
                myokit.Plus(
                    myokit.Multiply(
                        myokit.Number(2),
                        myokit.Multiply(myokit.Name(lambda_0),
                                        myokit.Name(volume_t))),
                    myokit.Name(lambda_1))),
            myokit.Multiply(
                myokit.Name(kappa),
                myokit.Multiply(myokit.Name(conc), myokit.Name(volume_t)))))

    # set algebraic relation between drug and concentration
    # conc = amount / volume_c
    conc.set_rhs(myokit.Divide(myokit.Name(amount), myokit.Name(volume_c)))

    return model
Exemplo n.º 25
0
def get_rl_expression(x, dt, v=None):
    """
    For states ``x`` with RHS expressions written in the "inf-tau form" (see
    :meth:`has_inf_tau_form`) this returns a Rush-Larsen (RL) update expression
    of the form ``x_inf + (x - x_inf) * exp(-(dt / tau_x))``.

    If the state does not have the "inf-tau form", ``None`` is returned.

    Arguments:

    ``x``
        A state variable for which to return the RL update expression.
    ``dt``
        A :class:`myokit.Name` expression to use for the time step in the RL
        expression.
    ``v``
        An optional variable representing the membrane potential.

    Returns a :class:`myokit.Expression` if succesful, or ``None`` if not.

    Example:

        # Load a Myokit model
        model = myokit.load_model('example')
        v = model.get('membrane.V')

        # Get a copy where all HH-state variables are written in inf-tau form
        model = myokit.lib.hh.convert_hh_states_to_inf_tau_form(model, v)

        # Create an expression for the time step
        dt = myokit.Name('dt')

        # Show an RL-update for the variable ina.h
        h = model.get('ina.h')
        e = myokit.lib.hh.get_rl_expression(h, dt, v)
        print('h[t + dt] = ' + str(e))

    See:

    [1] Rush, Larsen (1978) A Practical Algorithm for Solving Dynamic Membrane
    Equations. IEEE Transactions on Biomedical Engineering,
    https://doi.org/10.1109/TBME.1978.326270

    [2] Marsh, Ziaratgahi, Spiteri (2012) The secrets to the success of the
    Rush-Larsen method and its generalization. IEEE Transactions on Biomedical
    Engineering, https://doi.org/10.1109/TBME.2012.2205575

    """
    # Test dt is an expression
    if not isinstance(dt, myokit.Expression):
        raise ValueError('Argument `dt` must be a myokit.Expression.')

    # Get x_inf and tau_x, if possible
    res = get_inf_and_tau(x, v)
    if res is None:
        return None

    # Create expression for RL update
    # x_inf + (x - x_inf) * exp(-(dt / tau_x))
    x = myokit.Name(x)
    x_inf = myokit.Name(res[0])
    tau_x = myokit.Name(res[1])
    return myokit.Plus(
        x_inf,
        myokit.Multiply(
            myokit.Minus(x, x_inf),
            myokit.Exp(myokit.PrefixMinus(myokit.Divide(dt, tau_x)))))
Exemplo n.º 26
0
    def test_basic(self):

        # Single and double precision and native maths
        ws = myokit.formats.opencl.OpenCLExpressionWriter()
        wd = myokit.formats.opencl.OpenCLExpressionWriter(
            myokit.DOUBLE_PRECISION)
        wn = myokit.formats.opencl.OpenCLExpressionWriter(native_math=False)

        a = myokit.Name(myokit.Model().add_component('c').add_variable('a'))
        b = myokit.Number('12', 'pF')

        # Name
        self.assertEqual(ws.ex(a), 'c.a')
        self.assertEqual(wd.ex(a), 'c.a')
        self.assertEqual(wn.ex(a), 'c.a')

        # Number with unit
        self.assertEqual(ws.ex(b), '12.0f')
        self.assertEqual(wd.ex(b), '12.0')
        self.assertEqual(wn.ex(b), '12.0f')

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(ws.ex(x), '12.0f')
        self.assertEqual(wd.ex(x), '12.0')
        self.assertEqual(wn.ex(x), '12.0f')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertEqual(ws.ex(x), '(-12.0f)')
        self.assertEqual(wd.ex(x), '(-12.0)')
        self.assertEqual(wn.ex(x), '(-12.0f)')

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(ws.ex(x), 'c.a + 12.0f')
        self.assertEqual(wd.ex(x), 'c.a + 12.0')
        self.assertEqual(wn.ex(x), 'c.a + 12.0f')
        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(ws.ex(x), 'c.a - 12.0f')
        self.assertEqual(wd.ex(x), 'c.a - 12.0')
        self.assertEqual(wn.ex(x), 'c.a - 12.0f')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(ws.ex(x), 'c.a * 12.0f')
        self.assertEqual(wd.ex(x), 'c.a * 12.0')
        self.assertEqual(wn.ex(x), 'c.a * 12.0f')
        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(ws.ex(x), 'c.a / 12.0f')
        self.assertEqual(wd.ex(x), 'c.a / 12.0')
        self.assertEqual(wn.ex(x), 'c.a / 12.0f')

        # Quotient
        x = myokit.Quotient(a, b)
        self.assertEqual(ws.ex(x), 'floor(c.a / 12.0f)')
        self.assertEqual(wd.ex(x), 'floor(c.a / 12.0)')
        self.assertEqual(wn.ex(x), 'floor(c.a / 12.0f)')
        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(ws.ex(x), 'c.a - 12.0f * (floor(c.a / 12.0f))')
        self.assertEqual(wd.ex(x), 'c.a - 12.0 * (floor(c.a / 12.0))')
        self.assertEqual(wn.ex(x), 'c.a - 12.0f * (floor(c.a / 12.0f))')
Exemplo n.º 27
0
    def _parse_apply(self, apply_element):
        """
        Parses an ``<apply>`` element.
        """
        # Apply must have kids
        if len(apply_element) == 0:
            raise MathMLError('Apply must contain at least one child element.',
                              apply_element)

        # Get first child
        iterator = iter(apply_element)
        element = self._next(iterator)

        # Decide what to do based on first child
        _, name = split(element.tag)

        # Handle derivative
        if name == 'diff':
            return self._parse_derivative(element, iterator)

        # Algebra (unary/binary/n-ary operators)
        elif name == 'plus':
            return self._parse_nary(element, iterator, myokit.Plus,
                                    myokit.PrefixPlus)
        elif name == 'minus':
            return self._parse_nary(element, iterator, myokit.Minus,
                                    myokit.PrefixMinus)
        elif name == 'times':
            return self._parse_nary(element, iterator, myokit.Multiply)
        elif name == 'divide':
            return self._parse_nary(element, iterator, myokit.Divide)

        # Basic functions
        elif name == 'exp':
            return myokit.Exp(*self._eat(element, iterator))
        elif name == 'ln':
            return myokit.Log(*self._eat(element, iterator))
        elif name == 'log':
            return self._parse_log(element, iterator)
        elif name == 'root':
            return self._parse_root(element, iterator)
        elif name == 'power':
            return myokit.Power(*self._eat(element, iterator, 2))
        elif name == 'floor':
            return myokit.Floor(*self._eat(element, iterator))
        elif name == 'ceiling':
            return myokit.Ceil(*self._eat(element, iterator))
        elif name == 'abs':
            return myokit.Abs(*self._eat(element, iterator))
        elif name == 'quotient':
            return myokit.Quotient(*self._eat(element, iterator, 2))
        elif name == 'rem':
            return myokit.Remainder(*self._eat(element, iterator, 2))

        # Logic
        elif name == 'and':
            return self._parse_nary(element, iterator, myokit.And)
        elif name == 'or':
            return self._parse_nary(element, iterator, myokit.Or)
        elif name == 'xor':
            # Becomes ``(x or y) and not(x and y)``
            x, y = self._eat(element, iterator, 2)
            return myokit.And(myokit.Or(x, y), myokit.Not(myokit.And(x, y)))

        elif name == 'not':
            return myokit.Not(*self._eat(element, iterator))
        elif name == 'eq' or name == 'equivalent':
            return myokit.Equal(*self._eat(element, iterator, 2))
        elif name == 'neq':
            return myokit.NotEqual(*self._eat(element, iterator, 2))
        elif name == 'gt':
            return myokit.More(*self._eat(element, iterator, 2))
        elif name == 'lt':
            return myokit.Less(*self._eat(element, iterator, 2))
        elif name == 'geq':
            return myokit.MoreEqual(*self._eat(element, iterator, 2))
        elif name == 'leq':
            return myokit.LessEqual(*self._eat(element, iterator, 2))

        # Trigonometry
        elif name == 'sin':
            return myokit.Sin(*self._eat(element, iterator))
        elif name == 'cos':
            return myokit.Cos(*self._eat(element, iterator))
        elif name == 'tan':
            return myokit.Tan(*self._eat(element, iterator))
        elif name == 'arcsin':
            return myokit.ASin(*self._eat(element, iterator))
        elif name == 'arccos':
            return myokit.ACos(*self._eat(element, iterator))
        elif name == 'arctan':
            return myokit.ATan(*self._eat(element, iterator))

        # Redundant trigonometry (CellML includes this)
        elif name == 'csc':
            # Cosecant: csc(x) = 1 / sin(x)
            return myokit.Divide(self._const(1),
                                 myokit.Sin(*self._eat(element, iterator)))
        elif name == 'sec':
            # Secant: sec(x) = 1 / cos(x)
            return myokit.Divide(self._const(1),
                                 myokit.Cos(*self._eat(element, iterator)))
        elif name == 'cot':
            # Contangent: cot(x) = 1 / tan(x)
            return myokit.Divide(self._const(1),
                                 myokit.Tan(*self._eat(element, iterator)))
        elif name == 'arccsc':
            # ArcCosecant: acsc(x) = asin(1/x)
            return myokit.ASin(
                myokit.Divide(self._const(1), *self._eat(element, iterator)))
        elif name == 'arcsec':
            # ArcSecant: asec(x) = acos(1/x)
            return myokit.ACos(
                myokit.Divide(self._const(1), *self._eat(element, iterator)))
        elif name == 'arccot':
            # ArcCotangent: acot(x) = atan(1/x)
            return myokit.ATan(
                myokit.Divide(self._const(1), *self._eat(element, iterator)))

        # Hyperbolic trig
        elif name == 'sinh':
            # Hyperbolic sine: sinh(x) = 0.5 * (e^x - e^-x)
            x = self._eat(element, iterator)[0]
            return myokit.Multiply(
                self._const(0.5),
                myokit.Minus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))
        elif name == 'cosh':
            # Hyperbolic cosine: cosh(x) = 0.5 * (e^x + e^-x)
            x = self._eat(element, iterator)[0]
            return myokit.Multiply(
                self._const(0.5),
                myokit.Plus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))
        elif name == 'tanh':
            # Hyperbolic tangent: tanh(x) = (e^2x - 1) / (e^2x + 1)
            x = self._eat(element, iterator)[0]
            e2x = myokit.Exp(myokit.Multiply(self._const(2), x))
            return myokit.Divide(myokit.Minus(e2x, self._const(1)),
                                 myokit.Plus(e2x, self._const(1)))
        elif name == 'arcsinh':
            # Inverse hyperbolic sine: asinh(x) = log(x + sqrt(x*x + 1))
            x = self._eat(element, iterator)[0]
            return myokit.Log(
                myokit.Plus(
                    x,
                    myokit.Sqrt(
                        myokit.Plus(myokit.Multiply(x, x), self._const(1)))))
        elif name == 'arccosh':
            # Inverse hyperbolic cosine:
            #   acosh(x) = log(x + sqrt(x*x - 1))
            x = self._eat(element, iterator)[0]
            return myokit.Log(
                myokit.Plus(
                    x,
                    myokit.Sqrt(
                        myokit.Minus(myokit.Multiply(x, x), self._const(1)))))
        elif name == 'arctanh':
            # Inverse hyperbolic tangent:
            #   atanh(x) = 0.5 * log((1 + x) / (1 - x))
            x = self._eat(element, iterator)[0]
            return myokit.Multiply(
                self._const(0.5),
                myokit.Log(
                    myokit.Divide(myokit.Plus(self._const(1), x),
                                  myokit.Minus(self._const(1), x))))

        # Hyperbolic redundant trig
        elif name == 'csch':
            # Hyperbolic cosecant: csch(x) = 2 / (exp(x) - exp(-x))
            x = self._eat(element, iterator)[0]
            return myokit.Divide(
                self._const(2),
                myokit.Minus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))
        elif name == 'sech':
            # Hyperbolic secant: sech(x) = 2 / (exp(x) + exp(-x))
            x = self._eat(element, iterator)[0]
            return myokit.Divide(
                self._const(2),
                myokit.Plus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))
        elif name == 'coth':
            # Hyperbolic cotangent:
            #   coth(x) = (exp(2*x) + 1) / (exp(2*x) - 1)
            x = self._eat(element, iterator)[0]
            e2x = myokit.Exp(myokit.Multiply(self._const(2), x))
            return myokit.Divide(myokit.Plus(e2x, self._const(1)),
                                 myokit.Minus(e2x, self._const(1)))
        elif name == 'arccsch':
            # Inverse hyperbolic cosecant:
            #   arccsch(x) = log(1 / x + sqrt(1 / x^2 + 1))
            x = self._eat(element, iterator)[0]
            return myokit.Log(
                myokit.Plus(
                    myokit.Divide(self._const(1), x),
                    myokit.Sqrt(
                        myokit.Plus(
                            myokit.Divide(self._const(1),
                                          myokit.Multiply(x, x)),
                            self._const(1)))))
        elif name == 'arcsech':
            # Inverse hyperbolic secant:
            #   arcsech(x) = log(1 / x + sqrt(1 / x^2 - 1))
            x = self._eat(element, iterator)[0]
            return myokit.Log(
                myokit.Plus(
                    myokit.Divide(self._const(1), x),
                    myokit.Sqrt(
                        myokit.Minus(
                            myokit.Divide(self._const(1),
                                          myokit.Multiply(x, x)),
                            self._const(1)))))
        elif name == 'arccoth':
            # Inverse hyperbolic cotangent:
            #   arccoth(x) = 0.5 * log((x + 1) / (x - 1))
            x = self._eat(element, iterator)[0]
            return myokit.Multiply(
                self._const(0.5),
                myokit.Log(
                    myokit.Divide(myokit.Plus(x, self._const(1)),
                                  myokit.Minus(x, self._const(1)))))

        # Last option: A single atomic inside an apply
        # Do this one last to stop e.g. <apply><times /></apply> returning the
        # error 'Unsupported element' (which is what parse_atomic would call).
        elif len(apply_element) == 1:
            return self._parse_atomic(element)

        # Unexpected element
        else:
            raise MathMLError(
                'Unsupported element in apply: ' + str(element.tag) + '.',
                element)
Exemplo n.º 28
0
    def test_functions(self):

        # Single and double precision and native maths
        ws = myokit.formats.opencl.OpenCLExpressionWriter()
        wd = myokit.formats.opencl.OpenCLExpressionWriter(
            myokit.DOUBLE_PRECISION)
        wn = myokit.formats.opencl.OpenCLExpressionWriter(native_math=False)

        a = myokit.Name(myokit.Model().add_component('c').add_variable('a'))
        b = myokit.Number('12', 'pF')

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(ws.ex(x), 'pow(c.a, 12.0f)')
        self.assertEqual(wd.ex(x), 'pow(c.a, 12.0)')
        self.assertEqual(wn.ex(x), 'pow(c.a, 12.0f)')
        # Square
        x = myokit.Power(a, myokit.Number(2))
        self.assertEqual(ws.ex(x), '(c.a * c.a)')
        self.assertEqual(wd.ex(x), '(c.a * c.a)')
        self.assertEqual(wn.ex(x), '(c.a * c.a)')
        # Square with brackets
        x = myokit.Power(myokit.Plus(a, b), myokit.Number(2))
        self.assertEqual(ws.ex(x), '((c.a + 12.0f) * (c.a + 12.0f))')
        self.assertEqual(wd.ex(x), '((c.a + 12.0) * (c.a + 12.0))')
        self.assertEqual(wn.ex(x), '((c.a + 12.0f) * (c.a + 12.0f))')
        # Sqrt
        x = myokit.Sqrt(b)
        self.assertEqual(ws.ex(x), 'native_sqrt(12.0f)')
        self.assertEqual(wd.ex(x), 'native_sqrt(12.0)')
        self.assertEqual(wn.ex(x), 'sqrt(12.0f)')
        # Exp
        x = myokit.Exp(a)
        self.assertEqual(ws.ex(x), 'native_exp(c.a)')
        self.assertEqual(wd.ex(x), 'native_exp(c.a)')
        self.assertEqual(wn.ex(x), 'exp(c.a)')
        # Log(a)
        x = myokit.Log(b)
        self.assertEqual(ws.ex(x), 'native_log(12.0f)')
        self.assertEqual(wd.ex(x), 'native_log(12.0)')
        self.assertEqual(wn.ex(x), 'log(12.0f)')
        # Log(a, b)
        x = myokit.Log(a, b)
        self.assertEqual(ws.ex(x), '(native_log(c.a) / native_log(12.0f))')
        self.assertEqual(wd.ex(x), '(native_log(c.a) / native_log(12.0))')
        self.assertEqual(wn.ex(x), '(log(c.a) / log(12.0f))')
        # Log10
        x = myokit.Log10(b)
        self.assertEqual(ws.ex(x), 'native_log10(12.0f)')
        self.assertEqual(wd.ex(x), 'native_log10(12.0)')
        self.assertEqual(wn.ex(x), 'log10(12.0f)')

        # Sin
        x = myokit.Sin(b)
        self.assertEqual(ws.ex(x), 'native_sin(12.0f)')
        self.assertEqual(wd.ex(x), 'native_sin(12.0)')
        self.assertEqual(wn.ex(x), 'sin(12.0f)')
        # Cos
        x = myokit.Cos(b)
        self.assertEqual(ws.ex(x), 'native_cos(12.0f)')
        self.assertEqual(wd.ex(x), 'native_cos(12.0)')
        self.assertEqual(wn.ex(x), 'cos(12.0f)')
        # Tan
        x = myokit.Tan(b)
        self.assertEqual(ws.ex(x), 'native_tan(12.0f)')
        self.assertEqual(wd.ex(x), 'native_tan(12.0)')
        self.assertEqual(wn.ex(x), 'tan(12.0f)')
        # ASin
        x = myokit.ASin(b)
        self.assertEqual(ws.ex(x), 'asin(12.0f)')
        self.assertEqual(wd.ex(x), 'asin(12.0)')
        self.assertEqual(wn.ex(x), 'asin(12.0f)')
        # ACos
        x = myokit.ACos(b)
        self.assertEqual(ws.ex(x), 'acos(12.0f)')
        self.assertEqual(wd.ex(x), 'acos(12.0)')
        self.assertEqual(wn.ex(x), 'acos(12.0f)')
        # ATan
        x = myokit.ATan(b)
        self.assertEqual(ws.ex(x), 'atan(12.0f)')
        self.assertEqual(wd.ex(x), 'atan(12.0)')
        self.assertEqual(wn.ex(x), 'atan(12.0f)')

        # Floor
        x = myokit.Floor(b)
        self.assertEqual(ws.ex(x), 'floor(12.0f)')
        self.assertEqual(wd.ex(x), 'floor(12.0)')
        self.assertEqual(wn.ex(x), 'floor(12.0f)')
        # Ceil
        x = myokit.Ceil(b)
        self.assertEqual(ws.ex(x), 'ceil(12.0f)')
        self.assertEqual(wd.ex(x), 'ceil(12.0)')
        self.assertEqual(wn.ex(x), 'ceil(12.0f)')
        # Abs
        x = myokit.Abs(b)
        self.assertEqual(ws.ex(x), 'fabs(12.0f)')
        self.assertEqual(wd.ex(x), 'fabs(12.0)')
        self.assertEqual(wn.ex(x), 'fabs(12.0f)')
    def parsex(node):
        """
        Parses a mathml expression.
        """
        def chain(kind, node, unary=None):
            """
            Parses operands for chained operators (for example plus, minus,
            times and division).

            The argument ``kind`` must be the myokit expression type being
            parsed, ``node`` is a DOM node and ``unary``, if given, should be
            the unary expression type (unary Plus or unary Minus).
            """
            ops = []
            node = dom_next(node)
            while node:
                ops.append(parsex(node))
                node = dom_next(node)
            n = len(ops)
            if n < 1:
                raise MathMLError('Operator needs at least one operand.')
            if n < 2:
                if unary:
                    return unary(ops[0])
                else:
                    raise MathMLError('Operator needs at least two operands')
            ex = kind(ops[0], ops[1])
            for i in range(2, n):
                ex = kind(ex, ops[i])
            return ex

        # Start parsing
        name = node.tagName
        if name == 'apply':
            # Brackets, can be ignored in an expression tree.
            return parsex(dom_child(node))

        elif name == 'ci':
            # Reference
            var = str(node.firstChild.data).strip()
            if var_table is not None:
                try:
                    var = var_table[var]
                except KeyError:
                    if logger:
                        logger.warn('Unable to resolve reference to <' +
                                    str(var) + '>.')
            return myokit.Name(var)

        elif name == 'diff':
            # Derivative
            # Check time variable
            bvar = dom_next(node, 'bvar')
            if derivative_post_processor:
                derivative_post_processor(parsex(dom_child(bvar, 'ci')))

            # Check degree, if given
            d = dom_child(bvar, 'degree')
            if d is not None:
                d = parsex(dom_child(d, 'cn')).eval()
                if not d == 1:
                    raise MathMLError(
                        'Only derivatives of degree one are supported.')

            # Create derivative and return
            x = dom_next(node, 'ci')
            if x is None:
                raise MathMLError(
                    'Derivative of an expression found: only derivatives of'
                    ' variables are supported.')
            return myokit.Derivative(parsex(x))

        elif name == 'cn':
            # Number
            number = parse_mathml_number(node, logger)
            if number_post_processor:
                return number_post_processor(node, number)
            return number

        #
        # Algebra
        #

        elif name == 'plus':
            return chain(myokit.Plus, node, myokit.PrefixPlus)

        elif name == 'minus':
            return chain(myokit.Minus, node, myokit.PrefixMinus)

        elif name == 'times':
            return chain(myokit.Multiply, node)

        elif name == 'divide':
            return chain(myokit.Divide, node)

        #
        # Functions
        #

        elif name == 'exp':
            return myokit.Exp(parsex(dom_next(node)))

        elif name == 'ln':
            return myokit.Log(parsex(dom_next(node)))

        elif name == 'log':
            if dom_next(node).tagName != 'logbase':
                return myokit.Log10(parsex(dom_next(node)))
            else:
                return myokit.Log(parsex(dom_next(dom_next(node))),
                                  parsex(dom_child(dom_next(node))))

        elif name == 'root':
            # Check degree, if given
            nxt = dom_next(node)
            if nxt.tagName == 'degree':
                # Degree given, return x^(1/d) unless d is 2
                d = parsex(dom_child(nxt))
                x = parsex(dom_next(nxt))
                if d.is_literal() and d.eval() == 2:
                    return myokit.Sqrt(x)
                return myokit.Power(x, myokit.Divide(myokit.Number(1), d))
            else:
                return myokit.Sqrt(parsex(nxt))

        elif name == 'power':
            n2 = dom_next(node)
            return myokit.Power(parsex(n2), parsex(dom_next(n2)))

        elif name == 'floor':
            return myokit.Floor(parsex(dom_next(node)))

        elif name == 'ceiling':
            return myokit.Ceil(parsex(dom_next(node)))

        elif name == 'abs':
            return myokit.Abs(parsex(dom_next(node)))

        elif name == 'quotient':
            n2 = dom_next(node)
            return myokit.Quotient(parsex(n2), parsex(dom_next(n2)))

        elif name == 'rem':
            n2 = dom_next(node)
            return myokit.Remainder(parsex(n2), parsex(dom_next(n2)))

        #
        # Trigonometry
        #

        elif name == 'sin':
            return myokit.Sin(parsex(dom_next(node)))

        elif name == 'cos':
            return myokit.Cos(parsex(dom_next(node)))

        elif name == 'tan':
            return myokit.Tan(parsex(dom_next(node)))

        elif name == 'arcsin':
            return myokit.ASin(parsex(dom_next(node)))

        elif name == 'arccos':
            return myokit.ACos(parsex(dom_next(node)))

        elif name == 'arctan':
            return myokit.ATan(parsex(dom_next(node)))

        #
        # Redundant trigonometry (CellML includes this)
        #

        elif name == 'csc':
            # Cosecant: csc(x) = 1 / sin(x)
            return myokit.Divide(myokit.Number(1),
                                 myokit.Sin(parsex(dom_next(node))))

        elif name == 'sec':
            # Secant: sec(x) = 1 / cos(x)
            return myokit.Divide(myokit.Number(1),
                                 myokit.Cos(parsex(dom_next(node))))

        elif name == 'cot':
            # Contangent: cot(x) = 1 / tan(x)
            return myokit.Divide(myokit.Number(1),
                                 myokit.Tan(parsex(dom_next(node))))

        elif name == 'arccsc':
            # ArcCosecant: acsc(x) = asin(1/x)
            return myokit.ASin(
                myokit.Divide(myokit.Number(1), parsex(dom_next(node))))

        elif name == 'arcsec':
            # ArcSecant: asec(x) = acos(1/x)
            return myokit.ACos(
                myokit.Divide(myokit.Number(1), parsex(dom_next(node))))

        elif name == 'arccot':
            # ArcCotangent: acot(x) = atan(1/x)
            return myokit.ATan(
                myokit.Divide(myokit.Number(1), parsex(dom_next(node))))

        #
        # Hyperbolic trigonometry (CellML again)
        #

        elif name == 'sinh':
            # Hyperbolic sine: sinh(x) = 0.5 * (e^x - e^-x)
            x = parsex(dom_next(node))
            return myokit.Multiply(
                myokit.Number(0.5),
                myokit.Minus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))

        elif name == 'cosh':
            # Hyperbolic cosine: cosh(x) = 0.5 * (e^x + e^-x)
            x = parsex(dom_next(node))
            return myokit.Multiply(
                myokit.Number(0.5),
                myokit.Plus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))

        elif name == 'tanh':
            # Hyperbolic tangent: tanh(x) = (e^2x - 1) / (e^2x + 1)
            x = parsex(dom_next(node))
            e2x = myokit.Exp(myokit.Multiply(myokit.Number(2), x))
            return myokit.Divide(myokit.Minus(e2x, myokit.Number(1)),
                                 myokit.Plus(e2x, myokit.Number(1)))

        #
        # Inverse hyperbolic trigonometry (CellML...)
        #

        elif name == 'arcsinh':
            # Inverse hyperbolic sine: asinh(x) = log(x + sqrt(1 + x*x))
            x = parsex(dom_next(node))
            return myokit.Log(
                myokit.Plus(
                    x,
                    myokit.Sqrt(
                        myokit.Plus(myokit.Number(1), myokit.Multiply(x, x)))))

        elif name == 'arccosh':
            # Inverse hyperbolic cosine:
            #   acosh(x) = log(x + sqrt(x + 1) * sqrt(x - 1))
            x = parsex(dom_next(node))
            return myokit.Log(
                myokit.Plus(
                    x,
                    myokit.Multiply(
                        myokit.Sqrt(myokit.Plus(x, myokit.Number(1))),
                        myokit.Sqrt(myokit.Minus(x, myokit.Number(1))))))

        elif name == 'arctanh':
            # Inverse hyperbolic tangent:
            #   atanh(x) = 0.5 * (log(1 + x) - log(1 - x))
            x = parsex(dom_next(node))
            return myokit.Multiply(
                myokit.Number(0.5),
                myokit.Minus(myokit.Log(myokit.Plus(myokit.Number(1), x)),
                             myokit.Log(myokit.Minus(myokit.Number(1), x))))

        #
        # Hyperbolic redundant trigonometry (CellML...)
        #

        elif name == 'csch':
            # Hyperbolic cosecant: csch(x) = 2 / (exp(x) - exp(-x))
            x = parsex(dom_next(node))
            return myokit.Divide(
                myokit.Number(2),
                myokit.Minus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))

        elif name == 'sech':
            # Hyperbolic secant: sech(x) = 2 / (exp(x) + exp(-x))
            x = parsex(dom_next(node))
            return myokit.Divide(
                myokit.Number(2),
                myokit.Plus(myokit.Exp(x), myokit.Exp(myokit.PrefixMinus(x))))

        elif name == 'coth':
            # Hyperbolic cotangent:
            #   coth(x) = (exp(2*x) + 1) / (exp(2*x) - 1)
            x = parsex(dom_next(node))
            e2x = myokit.Exp(myokit.Multiply(myokit.Number(2), x))
            return myokit.Divide(myokit.Plus(e2x, myokit.Number(1)),
                                 myokit.Minus(e2x, myokit.Number(1)))

        #
        # Inverse hyperbolic redundant trigonometry (CellML has a lot to answer
        # for...)
        #

        elif name == 'arccsch':
            # Inverse hyperbolic cosecant:
            #   arccsch(x) = log(sqrt(1/(x*x) + 1) + 1/x)
            x = parsex(dom_next(node))
            return myokit.Log(
                myokit.Plus(
                    myokit.Sqrt(
                        myokit.Plus(
                            myokit.Divide(myokit.Number(1),
                                          myokit.Multiply(x, x)),
                            myokit.Number(1))),
                    myokit.Divide(myokit.Number(1), x)))
        elif name == 'arcsech':
            # Inverse hyperbolic secant:
            #   arcsech(x) = log(sqrt(1/(x*x) - 1) + 1/x)
            x = parsex(dom_next(node))
            return myokit.Log(
                myokit.Plus(
                    myokit.Sqrt(
                        myokit.Minus(
                            myokit.Divide(myokit.Number(1),
                                          myokit.Multiply(x, x)),
                            myokit.Number(1))),
                    myokit.Divide(myokit.Number(1), x)))
        elif name == 'arccoth':
            # Inverse hyperbolic cotangent:
            #   arccoth(x) = 0.5 * (log(3 + 1) - log(3 - 1))
            x = parsex(dom_next(node))
            return myokit.Multiply(
                myokit.Number(0.5),
                myokit.Log(
                    myokit.Divide(myokit.Plus(x, myokit.Number(1)),
                                  myokit.Minus(x, myokit.Number(1)))))

        #
        # Logic
        #

        elif name == 'and':
            return chain(myokit.And, node)

        elif name == 'or':
            return chain(myokit.Or, node)

        elif name == 'not':
            return chain(None, node, myokit.Not)

        elif name == 'eq' or name == 'equivalent':
            n2 = dom_next(node)
            return myokit.Equal(parsex(n2), parsex(dom_next(n2)))

        elif name == 'neq':
            n2 = dom_next(node)
            return myokit.NotEqual(parsex(n2), parsex(dom_next(n2)))

        elif name == 'gt':
            n2 = dom_next(node)
            return myokit.More(parsex(n2), parsex(dom_next(n2)))

        elif name == 'lt':
            n2 = dom_next(node)
            return myokit.Less(parsex(n2), parsex(dom_next(n2)))

        elif name == 'geq':
            n2 = dom_next(node)
            return myokit.MoreEqual(parsex(n2), parsex(dom_next(n2)))

        elif name == 'leq':
            n2 = dom_next(node)
            return myokit.LessEqual(parsex(n2), parsex(dom_next(n2)))

        elif name == 'piecewise':
            # Piecewise contains at least one piece, optionally contains an
            #  "otherwise". Syntax doesn't ensure this statement makes sense.
            conds = []
            funcs = []
            other = None
            piece = dom_child(node)
            while piece:
                if piece.tagName == 'otherwise':
                    if other is None:
                        other = parsex(dom_child(piece))
                    elif logger:
                        logger.warn(
                            'Multiple <otherwise> tags found in <piecewise>'
                            ' statement.')
                elif piece.tagName == 'piece':
                    n2 = dom_child(piece)
                    funcs.append(parsex(n2))
                    conds.append(parsex(dom_next(n2)))
                elif logger:
                    logger.warn('Unexpected tag type in <piecewise>: <' +
                                piece.tagName + '>.')
                piece = dom_next(piece)

            if other is None:
                if logger:
                    logger.warn('No <otherwise> tag found in <piecewise>')
                other = myokit.Number(0)

            # Create string of if statements
            args = []
            f = iter(funcs)
            for c in conds:
                args.append(c)
                args.append(next(f))
            args.append(other)
            return myokit.Piecewise(*args)

        #
        # Constants
        #

        elif name == 'pi':
            return myokit.Number('3.14159265358979323846')
        elif name == 'exponentiale':
            return myokit.Exp(myokit.Number(1))
        elif name == 'true':
            # This is corrent, even in Python True == 1 but not True == 2
            return myokit.Number(1)
        elif name == 'false':
            return myokit.Number(0)

        #
        # Unknown/unhandled elements
        #
        else:
            if logger:
                logger.warn('Unknown element: ' + name)
            ops = []
            node = dom_child(node) if dom_child(node) else dom_next(node)
            while node:
                ops.append(parsex(node))
                node = dom_next(node)
            return myokit.UnsupportedFunction(name, ops)
Exemplo n.º 30
0
    def test_all(self):
        # Single and double precision
        ws = myokit.formats.cuda.CudaExpressionWriter()
        wd = myokit.formats.cuda.CudaExpressionWriter(myokit.DOUBLE_PRECISION)

        model = myokit.Model()
        component = model.add_component('c')
        avar = component.add_variable('a')

        # Name
        a = myokit.Name(avar)
        self.assertEqual(ws.ex(a), 'c.a')
        self.assertEqual(wd.ex(a), 'c.a')
        # Number with unit
        b = myokit.Number('12', 'pF')
        self.assertEqual(ws.ex(b), '12.0f')
        self.assertEqual(wd.ex(b), '12.0')

        # Prefix plus
        x = myokit.PrefixPlus(b)
        self.assertEqual(ws.ex(x), '12.0f')
        self.assertEqual(wd.ex(x), '12.0')
        # Prefix minus
        x = myokit.PrefixMinus(b)
        self.assertEqual(ws.ex(x), '(-12.0f)')
        self.assertEqual(wd.ex(x), '(-12.0)')

        # Plus
        x = myokit.Plus(a, b)
        self.assertEqual(ws.ex(x), 'c.a + 12.0f')
        self.assertEqual(wd.ex(x), 'c.a + 12.0')
        # Minus
        x = myokit.Minus(a, b)
        self.assertEqual(ws.ex(x), 'c.a - 12.0f')
        self.assertEqual(wd.ex(x), 'c.a - 12.0')
        # Multiply
        x = myokit.Multiply(a, b)
        self.assertEqual(ws.ex(x), 'c.a * 12.0f')
        self.assertEqual(wd.ex(x), 'c.a * 12.0')
        # Divide
        x = myokit.Divide(a, b)
        self.assertEqual(ws.ex(x), 'c.a / 12.0f')
        self.assertEqual(wd.ex(x), 'c.a / 12.0')

        # Quotient
        x = myokit.Quotient(a, b)
        self.assertEqual(ws.ex(x), 'floorf(c.a / 12.0f)')
        self.assertEqual(wd.ex(x), 'floor(c.a / 12.0)')
        # Remainder
        x = myokit.Remainder(a, b)
        self.assertEqual(ws.ex(x), 'c.a - 12.0f * (floorf(c.a / 12.0f))')
        self.assertEqual(wd.ex(x), 'c.a - 12.0 * (floor(c.a / 12.0))')

        # Power
        x = myokit.Power(a, b)
        self.assertEqual(ws.ex(x), 'powf(c.a, 12.0f)')
        self.assertEqual(wd.ex(x), 'pow(c.a, 12.0)')
        # Square
        x = myokit.Power(a, myokit.Number(2))
        self.assertEqual(ws.ex(x), '(c.a * c.a)')
        self.assertEqual(wd.ex(x), '(c.a * c.a)')
        # Square with brackets
        x = myokit.Power(myokit.Plus(a, b), myokit.Number(2))
        self.assertEqual(ws.ex(x), '((c.a + 12.0f) * (c.a + 12.0f))')
        self.assertEqual(wd.ex(x), '((c.a + 12.0) * (c.a + 12.0))')
        # Sqrt
        x = myokit.Sqrt(b)
        self.assertEqual(ws.ex(x), 'sqrtf(12.0f)')
        self.assertEqual(wd.ex(x), 'sqrt(12.0)')
        # Exp
        x = myokit.Exp(a)
        self.assertEqual(ws.ex(x), 'expf(c.a)')
        self.assertEqual(wd.ex(x), 'exp(c.a)')
        # Log(a)
        x = myokit.Log(b)
        self.assertEqual(ws.ex(x), 'logf(12.0f)')
        self.assertEqual(wd.ex(x), 'log(12.0)')
        # Log(a, b)
        x = myokit.Log(a, b)
        self.assertEqual(ws.ex(x), '(logf(c.a) / logf(12.0f))')
        self.assertEqual(wd.ex(x), '(log(c.a) / log(12.0))')
        # Log10
        x = myokit.Log10(b)
        self.assertEqual(ws.ex(x), 'log10f(12.0f)')
        self.assertEqual(wd.ex(x), 'log10(12.0)')

        # Sin
        x = myokit.Sin(b)
        self.assertEqual(ws.ex(x), 'sinf(12.0f)')
        self.assertEqual(wd.ex(x), 'sin(12.0)')
        # Cos
        x = myokit.Cos(b)
        self.assertEqual(ws.ex(x), 'cosf(12.0f)')
        self.assertEqual(wd.ex(x), 'cos(12.0)')
        # Tan
        x = myokit.Tan(b)
        self.assertEqual(ws.ex(x), 'tanf(12.0f)')
        self.assertEqual(wd.ex(x), 'tan(12.0)')
        # ASin
        x = myokit.ASin(b)
        self.assertEqual(ws.ex(x), 'asinf(12.0f)')
        self.assertEqual(wd.ex(x), 'asin(12.0)')
        # ACos
        x = myokit.ACos(b)
        self.assertEqual(ws.ex(x), 'acosf(12.0f)')
        self.assertEqual(wd.ex(x), 'acos(12.0)')
        # ATan
        x = myokit.ATan(b)
        self.assertEqual(ws.ex(x), 'atanf(12.0f)')
        self.assertEqual(wd.ex(x), 'atan(12.0)')

        # Floor
        x = myokit.Floor(b)
        self.assertEqual(ws.ex(x), 'floorf(12.0f)')
        self.assertEqual(wd.ex(x), 'floor(12.0)')
        # Ceil
        x = myokit.Ceil(b)
        self.assertEqual(ws.ex(x), 'ceilf(12.0f)')
        self.assertEqual(wd.ex(x), 'ceil(12.0)')
        # Abs
        x = myokit.Abs(b)
        self.assertEqual(ws.ex(x), 'fabsf(12.0f)')
        self.assertEqual(wd.ex(x), 'fabs(12.0)')

        # Equal
        x = myokit.Equal(a, b)
        self.assertEqual(ws.ex(x), '(c.a == 12.0f)')
        self.assertEqual(wd.ex(x), '(c.a == 12.0)')
        # NotEqual
        x = myokit.NotEqual(a, b)
        self.assertEqual(ws.ex(x), '(c.a != 12.0f)')
        self.assertEqual(wd.ex(x), '(c.a != 12.0)')
        # More
        x = myokit.More(a, b)
        self.assertEqual(ws.ex(x), '(c.a > 12.0f)')
        self.assertEqual(wd.ex(x), '(c.a > 12.0)')
        # Less
        x = myokit.Less(a, b)
        self.assertEqual(ws.ex(x), '(c.a < 12.0f)')
        self.assertEqual(wd.ex(x), '(c.a < 12.0)')
        # MoreEqual
        x = myokit.MoreEqual(a, b)
        self.assertEqual(ws.ex(x), '(c.a >= 12.0f)')
        self.assertEqual(wd.ex(x), '(c.a >= 12.0)')
        # LessEqual
        x = myokit.LessEqual(a, b)
        self.assertEqual(ws.ex(x), '(c.a <= 12.0f)')
        self.assertEqual(wd.ex(x), '(c.a <= 12.0)')

        # Not
        cond1 = myokit.parse_expression('5 > 3')
        cond2 = myokit.parse_expression('2 < 1')
        x = myokit.Not(cond1)
        self.assertEqual(ws.ex(x), '!((5.0f > 3.0f))')
        self.assertEqual(wd.ex(x), '!((5.0 > 3.0))')
        # And
        x = myokit.And(cond1, cond2)
        self.assertEqual(ws.ex(x), '((5.0f > 3.0f) && (2.0f < 1.0f))')
        self.assertEqual(wd.ex(x), '((5.0 > 3.0) && (2.0 < 1.0))')
        # Or
        x = myokit.Or(cond1, cond2)
        self.assertEqual(ws.ex(x), '((5.0f > 3.0f) || (2.0f < 1.0f))')
        self.assertEqual(wd.ex(x), '((5.0 > 3.0) || (2.0 < 1.0))')

        # If
        x = myokit.If(cond1, a, b)
        self.assertEqual(ws.ex(x), '((5.0f > 3.0f) ? c.a : 12.0f)')
        self.assertEqual(wd.ex(x), '((5.0 > 3.0) ? c.a : 12.0)')
        # Piecewise
        c = myokit.Number(1)
        x = myokit.Piecewise(cond1, a, cond2, b, c)
        self.assertEqual(
            ws.ex(x), '((5.0f > 3.0f) ? c.a : ((2.0f < 1.0f) ? 12.0f : 1.0f))')
        self.assertEqual(wd.ex(x),
                         '((5.0 > 3.0) ? c.a : ((2.0 < 1.0) ? 12.0 : 1.0))')

        # Test fetching using ewriter method
        w = myokit.formats.ewriter('cuda')
        self.assertIsInstance(w, myokit.formats.cuda.CudaExpressionWriter)

        # Test without a Myokit expression
        self.assertRaisesRegex(ValueError, 'Unknown expression type', w.ex, 7)