Exemplo n.º 1
0
def extract_proper_type_for_values_list(ctx: MethodContext) -> Type:
    object_type = ctx.type
    if not isinstance(object_type, Instance):
        return ctx.default_return_type

    flat = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'flat'))
    named = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'named'))

    ret = ctx.default_return_type

    any_type = AnyType(TypeOfAny.implementation_artifact)
    if named and flat:
        ctx.api.fail("'flat' and 'named' can't be used together.", ctx.context)
        return ret
    elif named:
        # TODO: Fill in namedtuple fields/types
        row_arg = ctx.api.named_generic_type('typing.NamedTuple', [])
    elif flat:
        # TODO: Figure out row_arg type dependent on the argument passed in
        if len(ctx.args[0]) > 1:
            ctx.api.fail(
                "'flat' is not valid when values_list is called with more than one field.",
                ctx.context)
            return ret
        row_arg = any_type
    else:
        # TODO: Figure out tuple argument types dependent on the arguments passed in
        row_arg = ctx.api.named_generic_type('builtins.tuple', [any_type])

    first_arg = ret.args[0] if len(ret.args) > 0 else any_type
    new_type_args = [first_arg, row_arg]
    return helpers.reparametrize_instance(ret, new_type_args)
Exemplo n.º 2
0
def record_field_properties_into_outer_model_class(
        ctx: FunctionContext) -> None:
    api = cast(TypeChecker, ctx.api)
    outer_model = api.scope.active_class()
    if outer_model is None or not outer_model.has_base(
            helpers.MODEL_CLASS_FULLNAME):
        # outside models.Model class, undetermined
        return

    field_name = None
    for name_expr, stmt in helpers.iter_over_assignments(outer_model.defn):
        if stmt == ctx.context and isinstance(name_expr, NameExpr):
            field_name = name_expr.name
            break
    if field_name is None:
        return

    fields_metadata = outer_model.metadata.setdefault('django', {}).setdefault(
        'fields', {})

    # primary key
    is_primary_key = False
    primary_key_arg = helpers.get_argument_by_name(ctx, 'primary_key')
    if primary_key_arg:
        is_primary_key = helpers.parse_bool(primary_key_arg)
    fields_metadata[field_name] = {'primary_key': is_primary_key}

    # choices
    choices_arg = helpers.get_argument_by_name(ctx, 'choices')
    if choices_arg and isinstance(choices_arg, (TupleExpr, ListExpr)):
        # iterable of 2 element tuples of two kinds
        _, analyzed_choices = api.analyze_iterable_item_type(choices_arg)
        if isinstance(analyzed_choices, TupleType):
            first_element_type = analyzed_choices.items[0]
            if isinstance(first_element_type, Instance):
                fields_metadata[field_name][
                    'choices'] = first_element_type.type.fullname()

    # nullability
    null_arg = helpers.get_argument_by_name(ctx, 'null')
    is_nullable = False
    if null_arg:
        is_nullable = helpers.parse_bool(null_arg)
    fields_metadata[field_name]['null'] = is_nullable

    # is_blankable
    blank_arg = helpers.get_argument_by_name(ctx, 'blank')
    is_blankable = False
    if blank_arg:
        is_blankable = helpers.parse_bool(blank_arg)
    fields_metadata[field_name]['blank'] = is_blankable

    # default
    default_arg = helpers.get_argument_by_name(ctx, 'default')
    if default_arg and not helpers.is_none_expr(default_arg):
        fields_metadata[field_name]['default_specified'] = True
Exemplo n.º 3
0
def set_descriptor_types_for_field(ctx: FunctionContext) -> Instance:
    default_return_type = cast(Instance, ctx.default_return_type)
    is_nullable = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'null'))
    if not is_nullable and default_return_type.type.has_base(helpers.CHAR_FIELD_FULLNAME):
        # blank=True for CharField can be interpreted as null=True
        is_nullable = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'blank'))

    set_type = get_private_descriptor_type(default_return_type.type, '_pyi_private_set_type',
                                           is_nullable=is_nullable)
    get_type = get_private_descriptor_type(default_return_type.type, '_pyi_private_get_type',
                                           is_nullable=is_nullable)
    return helpers.reparametrize_instance(default_return_type, [set_type, get_type])
Exemplo n.º 4
0
def set_descriptor_types_for_field(ctx: FunctionContext) -> Instance:
    default_return_type = cast(Instance, ctx.default_return_type)
    is_nullable = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'null'))
    set_type = helpers.get_private_descriptor_type(default_return_type.type,
                                                   '_pyi_private_set_type',
                                                   is_nullable=is_nullable)
    get_type = helpers.get_private_descriptor_type(default_return_type.type,
                                                   '_pyi_private_get_type',
                                                   is_nullable=is_nullable)
    return helpers.reparametrize_instance(default_return_type,
                                          [set_type, get_type])
Exemplo n.º 5
0
def extract_proper_type_queryset_values_list(ctx: MethodContext) -> Type:
    object_type = ctx.type
    if not isinstance(object_type, Instance):
        return ctx.default_return_type

    ret = ctx.default_return_type

    model_arg = get_queryset_model_arg(ctx.default_return_type)
    # model_arg: Union[AnyType, Type] = ret.args[0] if len(ret.args) > 0 else any_type

    column_names: List[Optional[str]] = []
    column_types: OrderedDict[str, Type] = OrderedDict()

    fields_arg_expr = ctx.args[ctx.callee_arg_names.index('fields')]
    fields_param_is_specified = True
    if len(fields_arg_expr) == 0:
        # values_list/values with no args is not yet supported, so default to Any types for field types
        # It should in the future include all model fields, "extra" fields and "annotated" fields
        fields_param_is_specified = False

    if isinstance(model_arg, Instance):
        model_type_info = model_arg.type
    else:
        model_type_info = None

    any_type = AnyType(TypeOfAny.implementation_artifact)

    # Figure out each field name passed to fields
    only_strings_as_fields_expressions = True
    for field_expr in fields_arg_expr:
        if isinstance(field_expr, StrExpr):
            field_name = field_expr.value
            column_names.append(field_name)
            # Default to any type
            column_types[field_name] = any_type

            if model_type_info:
                resolved_lookup_type = resolve_values_lookup(
                    ctx.api, model_type_info, field_name)
                if resolved_lookup_type is not None:
                    column_types[field_name] = resolved_lookup_type
        else:
            # Dynamic field names are partially supported for values_list, but not values
            column_names.append(None)
            only_strings_as_fields_expressions = False

    flat = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'flat'))
    named = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'named'))

    api = cast(TypeChecker, ctx.api)
    if named and flat:
        api.fail("'flat' and 'named' can't be used together.", ctx.context)
        return ret

    elif named:
        # named=True, flat=False -> List[NamedTuple]
        if fields_param_is_specified and only_strings_as_fields_expressions:
            row_arg = helpers.make_named_tuple(api,
                                               fields=column_types,
                                               name="Row")
        else:
            # fallback to catch-all NamedTuple
            row_arg = helpers.make_named_tuple(api,
                                               fields=OrderedDict(),
                                               name="Row")

    elif flat:
        # named=False, flat=True -> List of elements
        if len(ctx.args[0]) > 1:
            api.fail(
                "'flat' is not valid when values_list is called with more than one field.",
                ctx.context)
            return ctx.default_return_type

        if fields_param_is_specified and only_strings_as_fields_expressions:
            # Grab first element
            row_arg = column_types[column_names[0]]
        else:
            row_arg = any_type

    else:
        # named=False, flat=False -> List[Tuple]
        if fields_param_is_specified:
            args = [
                # Fallback to Any if the column name is unknown (e.g. dynamic)
                column_types.get(column_name, any_type)
                if column_name is not None else any_type
                for column_name in column_names
            ]
        else:
            args = [any_type]
        row_arg = helpers.make_tuple(api, fields=args)

    new_type_args = [model_arg, row_arg]
    return helpers.reparametrize_instance(ret, new_type_args)
Exemplo n.º 6
0
def extract_proper_type_for_values_and_values_list(method_name: str,
                                                   ctx: MethodContext) -> Type:
    api = cast(TypeChecker, ctx.api)

    object_type = ctx.type
    if not isinstance(object_type, Instance):
        return ctx.default_return_type

    ret = ctx.default_return_type

    any_type = AnyType(TypeOfAny.implementation_artifact)
    fields_arg_expr = ctx.args[ctx.callee_arg_names.index('fields')]

    model_arg: Union[AnyType,
                     Type] = ret.args[0] if len(ret.args) > 0 else any_type

    column_names: List[Optional[str]] = []
    column_types: OrderedDict[str, Type] = OrderedDict()

    fill_column_types = True

    if len(fields_arg_expr) == 0:
        # values_list/values with no args is not yet supported, so default to Any types for field types
        # It should in the future include all model fields, "extra" fields and "annotated" fields
        fill_column_types = False

    if isinstance(model_arg, Instance):
        model_type_info = model_arg.type
    else:
        model_type_info = None

    # Figure out each field name passed to fields
    has_dynamic_column_names = False
    for field_expr in fields_arg_expr:
        if isinstance(field_expr, StrExpr):
            field_name = field_expr.value
            column_names.append(field_name)
            # Default to any type
            column_types[field_name] = any_type

            if model_type_info:
                resolved_lookup_type = resolve_values_lookup(
                    ctx.api, model_type_info, field_name)
                if resolved_lookup_type is not None:
                    column_types[field_name] = resolved_lookup_type
        else:
            # Dynamic field names are partially supported for values_list, but not values
            column_names.append(None)
            has_dynamic_column_names = True

    if method_name == 'values_list':
        flat = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'flat'))
        named = helpers.parse_bool(helpers.get_argument_by_name(ctx, 'named'))

        if named and flat:
            api.fail("'flat' and 'named' can't be used together.", ctx.context)
            return ret
        elif named:
            if fill_column_types and not has_dynamic_column_names:
                row_arg = helpers.make_named_tuple(api,
                                                   fields=column_types,
                                                   name="Row")
            else:
                row_arg = helpers.make_named_tuple(api,
                                                   fields=OrderedDict(),
                                                   name="Row")
        elif flat:
            if len(ctx.args[0]) > 1:
                api.fail(
                    "'flat' is not valid when values_list is called with more than one field.",
                    ctx.context)
                return ret
            if fill_column_types and not has_dynamic_column_names:
                # Grab first element
                row_arg = column_types[column_names[0]]
            else:
                row_arg = any_type
        else:
            if fill_column_types:
                args = [
                    # Fallback to Any if the column name is unknown (e.g. dynamic)
                    column_types.get(column_name, any_type)
                    if column_name is not None else any_type
                    for column_name in column_names
                ]
            else:
                args = [any_type]
            row_arg = helpers.make_tuple(api, fields=args)
    elif method_name == 'values':
        expression_arg_names = ctx.arg_names[ctx.callee_arg_names.index(
            'expressions')]
        for expression_name in expression_arg_names:
            # Arbitrary additional annotation expressions are supported, but they all have type Any for now
            column_names.append(expression_name)
            column_types[expression_name] = any_type

        if fill_column_types and not has_dynamic_column_names:
            row_arg = helpers.make_typeddict(api,
                                             fields=column_types,
                                             required_keys=set())
        else:
            return ctx.default_return_type
    else:
        raise Exception(
            f"extract_proper_type_for_values_list doesn't support method {method_name}"
        )

    new_type_args = [model_arg, row_arg]
    return helpers.reparametrize_instance(ret, new_type_args)