Exemplo n.º 1
0
def gen_dispatch_func_ir(
    builder: IRBuilder,
    fitem: FuncDef,
    main_func_name: str,
    dispatch_name: str,
    sig: FuncSignature,
) -> Tuple[FuncIR, Value]:
    """Create a dispatch function (a function that checks the first argument type and dispatches
    to the correct implementation)
    """
    builder.enter(FuncInfo(fitem, dispatch_name))
    setup_callable_class(builder)
    builder.fn_info.callable_class.ir.attributes['registry'] = dict_rprimitive
    builder.fn_info.callable_class.ir.attributes[
        'dispatch_cache'] = dict_rprimitive
    builder.fn_info.callable_class.ir.has_dict = True
    builder.fn_info.callable_class.ir.needs_getseters = True
    generate_singledispatch_callable_class_ctor(builder)

    generate_singledispatch_dispatch_function(builder, main_func_name, fitem)
    args, _, blocks, _, fn_info = builder.leave()
    dispatch_callable_class = add_call_to_callable_class(
        builder, args, blocks, sig, fn_info)
    builder.functions.append(dispatch_callable_class)
    add_get_to_callable_class(builder, fn_info)
    add_register_method_to_callable_class(builder, fn_info)
    func_reg = instantiate_callable_class(builder, fn_info)
    dispatch_func_ir = generate_dispatch_glue_native_function(
        builder, fitem, dispatch_callable_class.decl, dispatch_name)

    return dispatch_func_ir, func_reg
Exemplo n.º 2
0
    def __init__(self,
                 current_module: str,
                 types: Dict[Expression, Type],
                 graph: Graph,
                 errors: Errors,
                 mapper: Mapper,
                 pbv: PreBuildVisitor,
                 visitor: IRVisitor,
                 options: CompilerOptions) -> None:
        self.builder = LowLevelIRBuilder(current_module, mapper)
        self.builders = [self.builder]
        self.symtables = [OrderedDict()]  # type: List[OrderedDict[SymbolNode, SymbolTarget]]
        self.runtime_args = [[]]  # type: List[List[RuntimeArg]]
        self.function_name_stack = []  # type: List[str]
        self.class_ir_stack = []  # type: List[ClassIR]

        self.current_module = current_module
        self.mapper = mapper
        self.types = types
        self.graph = graph
        self.ret_types = []  # type: List[RType]
        self.functions = []  # type: List[FuncIR]
        self.classes = []  # type: List[ClassIR]
        self.final_names = []  # type: List[Tuple[str, RType]]
        self.callable_class_names = set()  # type: Set[str]
        self.options = options

        # These variables keep track of the number of lambdas, implicit indices, and implicit
        # iterators instantiated so we avoid name conflicts. The indices and iterators are
        # instantiated from for-loops.
        self.lambda_counter = 0
        self.temp_counter = 0

        # These variables are populated from the first-pass PreBuildVisitor.
        self.free_variables = pbv.free_variables
        self.prop_setters = pbv.prop_setters
        self.encapsulating_funcs = pbv.encapsulating_funcs
        self.nested_fitems = pbv.nested_funcs.keys()
        self.fdefs_to_decorators = pbv.funcs_to_decorators

        self.visitor = visitor

        # This list operates similarly to a function call stack for nested functions. Whenever a
        # function definition begins to be generated, a FuncInfo instance is added to the stack,
        # and information about that function (e.g. whether it is nested, its environment class to
        # be generated) is stored in that FuncInfo instance. When the function is done being
        # generated, its corresponding FuncInfo is popped off the stack.
        self.fn_info = FuncInfo(INVALID_FUNC_DEF, '', '')
        self.fn_infos = [self.fn_info]  # type: List[FuncInfo]

        # This list operates as a stack of constructs that modify the
        # behavior of nonlocal control flow constructs.
        self.nonlocal_control = []  # type: List[NonlocalControl]

        self.errors = errors
        # Notionally a list of all of the modules imported by the
        # module being compiled, but stored as an OrderedDict so we
        # can also do quick lookups.
        self.imports = OrderedDict()  # type: OrderedDict[str, None]
Exemplo n.º 3
0
 def enter(self, fn_info: Union[FuncInfo, str] = '') -> None:
     if isinstance(fn_info, str):
         fn_info = FuncInfo(name=fn_info)
     self.builder = LowLevelIRBuilder(self.current_module, self.mapper)
     self.builders.append(self.builder)
     self.fn_info = fn_info
     self.fn_infos.append(self.fn_info)
     self.ret_types.append(none_rprimitive)
     if fn_info.is_generator:
         self.nonlocal_control.append(GeneratorNonlocalControl())
     else:
         self.nonlocal_control.append(BaseNonlocalControl())
     self.activate_block(BasicBlock())
Exemplo n.º 4
0
def gen_func_item(builder: IRBuilder,
                  fitem: FuncItem,
                  name: str,
                  sig: FuncSignature,
                  cdef: Optional[ClassDef] = None,
                  ) -> Tuple[FuncIR, Optional[Value]]:
    """Generate and return the FuncIR for a given FuncDef.

    If the given FuncItem is a nested function, then we generate a
    callable class representing the function and use that instead of
    the actual function. if the given FuncItem contains a nested
    function, then we generate an environment class so that inner
    nested functions can access the environment of the given FuncDef.

    Consider the following nested function:

        def a() -> None:
            def b() -> None:
                def c() -> None:
                    return None
                return None
            return None

    The classes generated would look something like the following.

                has pointer to        +-------+
        +-------------------------->  | a_env |
        |                             +-------+
        |                                 ^
        |                                 | has pointer to
    +-------+     associated with     +-------+
    | b_obj |   ------------------->  | b_env |
    +-------+                         +-------+
                                          ^
                                          |
    +-------+         has pointer to      |
    | c_obj |   --------------------------+
    +-------+
    """

    # TODO: do something about abstract methods.

    func_reg = None  # type: Optional[Value]

    # We treat lambdas as always being nested because we always generate
    # a class for lambdas, no matter where they are. (It would probably also
    # work to special case toplevel lambdas and generate a non-class function.)
    is_nested = fitem in builder.nested_fitems or isinstance(fitem, LambdaExpr)
    contains_nested = fitem in builder.encapsulating_funcs.keys()
    is_decorated = fitem in builder.fdefs_to_decorators
    in_non_ext = False
    class_name = None
    if cdef:
        ir = builder.mapper.type_to_ir[cdef.info]
        in_non_ext = not ir.is_ext_class
        class_name = cdef.name

    builder.enter(FuncInfo(fitem, name, class_name, gen_func_ns(builder),
                        is_nested, contains_nested, is_decorated, in_non_ext))

    # Functions that contain nested functions need an environment class to store variables that
    # are free in their nested functions. Generator functions need an environment class to
    # store a variable denoting the next instruction to be executed when the __next__ function
    # is called, along with all the variables inside the function itself.
    if builder.fn_info.contains_nested or builder.fn_info.is_generator:
        setup_env_class(builder)

    if builder.fn_info.is_nested or builder.fn_info.in_non_ext:
        setup_callable_class(builder)

    if builder.fn_info.is_generator:
        # Do a first-pass and generate a function that just returns a generator object.
        gen_generator_func(builder)
        blocks, env, ret_type, fn_info = builder.leave()
        func_ir, func_reg = gen_func_ir(builder, blocks, sig, env, fn_info, cdef)

        # Re-enter the FuncItem and visit the body of the function this time.
        builder.enter(fn_info)
        setup_env_for_generator_class(builder)
        load_outer_envs(builder, builder.fn_info.generator_class)
        if builder.fn_info.is_nested and isinstance(fitem, FuncDef):
            setup_func_for_recursive_call(builder, fitem, builder.fn_info.generator_class)
        create_switch_for_generator_class(builder)
        add_raise_exception_blocks_to_generator_class(builder, fitem.line)
    else:
        load_env_registers(builder)
        gen_arg_defaults(builder)

    if builder.fn_info.contains_nested and not builder.fn_info.is_generator:
        finalize_env_class(builder)

    builder.ret_types[-1] = sig.ret_type

    # Add all variables and functions that are declared/defined within this
    # function and are referenced in functions nested within this one to this
    # function's environment class so the nested functions can reference
    # them even if they are declared after the nested function's definition.
    # Note that this is done before visiting the body of this function.

    env_for_func = builder.fn_info  # type: Union[FuncInfo, ImplicitClass]
    if builder.fn_info.is_generator:
        env_for_func = builder.fn_info.generator_class
    elif builder.fn_info.is_nested or builder.fn_info.in_non_ext:
        env_for_func = builder.fn_info.callable_class

    if builder.fn_info.fitem in builder.free_variables:
        # Sort the variables to keep things deterministic
        for var in sorted(builder.free_variables[builder.fn_info.fitem],
                          key=lambda x: x.name):
            if isinstance(var, Var):
                rtype = builder.type_to_rtype(var.type)
                builder.add_var_to_env_class(var, rtype, env_for_func, reassign=False)

    if builder.fn_info.fitem in builder.encapsulating_funcs:
        for nested_fn in builder.encapsulating_funcs[builder.fn_info.fitem]:
            if isinstance(nested_fn, FuncDef):
                # The return type is 'object' instead of an RInstance of the
                # callable class because differently defined functions with
                # the same name and signature across conditional blocks
                # will generate different callable classes, so the callable
                # class that gets instantiated must be generic.
                builder.add_var_to_env_class(
                    nested_fn, object_rprimitive, env_for_func, reassign=False
                )

    builder.accept(fitem.body)
    builder.maybe_add_implicit_return()

    if builder.fn_info.is_generator:
        populate_switch_for_generator_class(builder)

    blocks, env, ret_type, fn_info = builder.leave()

    if fn_info.is_generator:
        add_methods_to_generator_class(builder, fn_info, sig, env, blocks, fitem.is_coroutine)
    else:
        func_ir, func_reg = gen_func_ir(builder, blocks, sig, env, fn_info, cdef)

    calculate_arg_defaults(builder, fn_info, env, func_reg)

    return (func_ir, func_reg)