Exemplo n.º 1
0
class Data(Task):
    def __init__(self, service: str, **kwargs):
        self.chunk_size = 250000
        self.table = None
        self.watched_column = None
        self.service_account = service_account.Credentials.from_service_account_file(
            os.environ['MYSQL_BIG_QUERY_GOOGLE_AUTH'])
        self.definitions = service_helpers.get_definitions(service)

        self.sd_logger = StackDriverAdapter(self.service_account)
        self.sd_logger.get_client()
        self.sd_logger.create_logger(f"{self.definitions['service']}-etl")

        self.pub_sub_client = PubSubAdapter(self.service_account)
        self.pub_sub_client.get_subscriber()
        self.pub_sub_client.set_subscription(
            f"{self.definitions['service']}-etl-data")

        self.big_query_client = BigQueryAdapter(self.service_account)
        self.big_query_client.get_client()
        self.big_query_client.set_data_set_ref(self.definitions['data_set'])

        self.my_sql_client = MySqlAdapter(service)
        super().__init__(**kwargs)

    def check_message(self, message):
        if 'table' in message:
            self.table = message['table']
        else:
            error_message = 'Table was not included in the message'
            self.sd_logger.error({'error': error_message}, {
                'class': 'Data',
                'method': 'check_message',
                'table': self.table
            })
            raise RuntimeError(error_message)

        if 'watched' in message:
            self.watched_column = message['watched']
        else:
            error_message = 'Watched was not included in the message'
            self.sd_logger.error({'error': error_message}, {
                'class': 'Data',
                'method': 'check_message',
                'table': self.table
            })
            raise RuntimeError(error_message)

    def get_schema_from_big_query(self) -> bool:
        self.big_query_client.set_table_ref(self.table)
        table_check = self.big_query_client.check_table()
        if table_check:
            return self.big_query_client.get_schema()
        return table_check

    def last_updated_data(self) -> Union[str, bool]:
        query = f"SELECT MAX({self.watched_column}) as last_updated FROM {self.definitions['data_set']}.{self.table}"
        result = self.big_query_client.query(query)
        if result:
            for value in result:
                if value['last_updated']:
                    return value['last_updated']
                else:
                    # return none to allow all records to be pulled at the start
                    return None
        else:
            self.sd_logger.critical(
                self.big_query_client.errors, {
                    'class': 'Data',
                    'method': 'last_updated_data',
                    'table': self.table
                })
        return result

    def get_number_of_records_to_import(self,
                                        last_updated) -> Union[int, bool]:
        result = self.my_sql_client.count_items_to_sync(
            table=self.table,
            watched_column=self.watched_column,
            last_run=last_updated)
        if self.my_sql_client.errors:
            self.sd_logger.critical(
                self.my_sql_client.errors, {
                    'class': 'Data',
                    'method': 'get_number_of_records_to_import',
                    'table': self.table
                })
        return result

    def query_mysql_for_records(self, last_updated_date: str, limit: int,
                                offset: int) -> Union[list, bool]:
        results = self.my_sql_client.get_records(
            table=self.table,
            watched_column=self.watched_column,
            last_run=last_updated_date,
            limit=limit,
            offset=offset)
        if not results:
            self.sd_logger.critical(
                self.my_sql_client.errors, {
                    'class': 'Data',
                    'method': 'get_number_of_records_to_import',
                    'table': self.table
                })
        return results

    def load_mysql_data_into_data_frame(
            self, data: list, schema: dict) -> Union[DataFrame, bool]:
        if len(data[0]) is not len(schema.keys()):
            self.sd_logger.critical(
                {
                    'message': "Schema and data length mismatch",
                    'schema_length': len(schema.keys()),
                    'data_length': len(data[0])
                }, {
                    'class': 'Data',
                    'method': 'load_mysql_data_into_data_frame',
                    'table': self.table
                })
            return False
        df = pd.DataFrame.from_records(data, columns=schema.keys())
        del data
        return df

    def transform_data_frame_to_match_big_query_schema(
            self, data_frame: DataFrame,
            schema: dict) -> Union[DataFrame, bool]:
        try:
            df = service_helpers.data_frame_to_schema(data_frame, schema)
        except ValueError as e:
            self.sd_logger.critical({'message': 'Error: {}'.format(e)}, {
                'class': 'Data',
                'method': 'transform_data_frame_to_match_big_query_schema',
                'table': self.table
            })
            return False
        return df

    def append_data_frame_to_big_query(self, data_frame: DataFrame):
        result = self.big_query_client.upload_data_frame(data_frame)
        if result:
            message = f"table:{self.table} | Records written: {data_frame.shape[0]}"
            self.sd_logger.info({'message': message}, {
                'class': 'Data',
                'method': 'append_data_frame_to_big_query',
                'table': self.table
            })

        else:
            self.sd_logger.critical(
                self.big_query_client.errors, {
                    'class': 'Data',
                    'method': 'append_data_frame_to_big_query',
                    'table': self.table
                })
        return result

    def write_df_to_storage(self, df: DataFrame) -> bool:
        storage_client = StorageAdapter(self.service_account)
        storage_client.get_client()

        date_time_obj = datetime.datetime.utcnow()

        location = f'error/csv/{self.table}/{date_time_obj.strftime("%m-%d-%Y_%H:%M:%S")}_UTC'

        result = storage_client.write_string(
            bucket=self.definitions['service'] + '-etl',
            destination=location,
            string=df.to_csv(),
            encoding='text/csv')
        if not result:
            self.sd_logger.error(
                storage_client.errors, {
                    'class': 'Data',
                    'method': 'write_df_to_storage',
                    'table': self.table
                })
            return False

        self.sd_logger.info({'message': f"Failed CSV added to {location}"}, {
            'class': 'Data',
            'method': 'write_df_to_storage',
            'table': self.table
        })

        return result
Exemplo n.º 2
0
class Audit(Task):
    def __init__(self, service: str, **kwargs):
        self.table = None
        self.watched_column = None
        self.primary_id = None
        self.sample_size = 1000
        self.service_account = service_account.Credentials.from_service_account_file(
            os.environ['MYSQL_BIG_QUERY_GOOGLE_AUTH'])
        self.definitions = service_helpers.get_definitions(service)

        self.sd_logger = StackDriverAdapter(self.service_account)
        self.sd_logger.get_client()
        self.sd_logger.create_logger(f"{self.definitions['service']}-etl")

        self.pub_sub_client = PubSubAdapter(self.service_account)
        self.pub_sub_client.get_subscriber()
        self.pub_sub_client.set_subscription(
            f"{self.definitions['service']}-etl")

        self.big_query_client = BigQueryAdapter(self.service_account)
        self.big_query_client.get_client()
        self.big_query_client.set_data_set_ref(self.definitions['data_set'])

        self.my_sql_client = MySqlAdapter()
        super().__init__(**kwargs)

    def extract_message_values(self, message: dict) -> bool:
        if self.table is None:
            if 'table' in message:
                self.table = message['table']
            else:
                self.sd_logger.error(
                    {
                        'error': 'Key: table was not found in message',
                        'data': message
                    }, {
                        'class': 'Audit',
                        'method': 'extract_message_values'
                    })
                return False

            if 'watched' in message:
                self.watched_column = message['watched']
            else:
                self.sd_logger.error(
                    {
                        'error': 'Key: watched was not found in message',
                        'data': message
                    }, {
                        'class': 'Audit',
                        'method': 'extract_message_values',
                        "table": self.table
                    })
                return False

            if 'primary_id' in message:
                self.primary_id = message['primary_id']
            else:
                self.sd_logger.error(
                    {
                        'error': 'Key: primary_id was not found in message',
                        'data': message
                    }, {
                        'class': 'Audit',
                        'method': 'extract_message_values',
                        "table": self.table
                    })
                return False
        return True

    def big_query_last_updated_data(self) -> Union[datetime.datetime, bool]:
        query = f"SELECT MAX({self.watched_column}) as last_updated FROM {self.definitions['data_set']}.{self.table}"
        result = self.big_query_client.query(query)
        if result:
            for value in result:
                if value.last_updated:
                    return value.last_updated
                else:
                    # use string of the start of unix time as the default time
                    return False
        else:
            self.sd_logger.critical(
                self.big_query_client.errors, {
                    'class': 'Audit',
                    'method': 'big_query_last_updated_data',
                    'table': self.table
                })
        return result

    def get_total_distinct_mysql(
            self, last_updated: datetime.datetime) -> Union[int, bool]:
        if last_updated:
            records = self.my_sql_client.count_distinct(
                table=self.table,
                index=self.primary_id,
                watched_column=self.watched_column,
                last_updated=last_updated)
        else:
            records = self.my_sql_client.count_distinct(table=self.table,
                                                        index=self.primary_id)
        if records is False:
            self.sd_logger.error({'error': self.my_sql_client.errors}, {
                'class': 'Audit',
                'method': 'get_total_distinct_mysql',
                "table": self.table
            })
        return records

    def get_total_distinct_big_query(self) -> int:
        query = [
            "SELECT COUNT(*) as total_count", "FROM (",
            f"select DISTINCT {self.primary_id}",
            f"FROM {self.definitions['data_set']}.{self.table}", ")"
        ]

        result = self.big_query_client.query(' '.join(query))

        if not result:
            self.sd_logger.error({'error': self.big_query_client.errors}, {
                'class': 'Audit',
                'method': 'get_total_distinct_big_query',
                "table": self.table
            })
            return False

        for item in result:
            return item.total_count

    def audit_from_totals(self, total_mysql: int,
                          total_big_query: int) -> bool:
        # check if the totals are the same
        if total_mysql == total_big_query:
            return True
        # big_query total will be lower than the mysql most of the time
        # allow it is be
        passing_total = int(round((total_mysql * .99), 0))
        if total_big_query >= passing_total:
            return True

        self.sd_logger.info(
            {
                'message': f"Audit totals did not match: {self.table}",
                "data": {
                    "MySQL Total": total_mysql,
                    "Big Query Total": total_big_query,
                    "passing total": passing_total
                }
            }, {
                'class': 'Audit',
                'method': 'audit_from_totals',
                "table": self.table
            })
        return False

    def get_random_mysql(self, last_run: int = None) -> Union[list, bool]:
        result = self.my_sql_client.get_random_records(
            table=self.table,
            limit=self.sample_size,
            index=self.primary_id,
            watched=self.watched_column,
            last_updated=last_run)
        if result is not False:
            return result

        self.sd_logger.error({'error': self.my_sql_client.errors}, {
            'class': 'Audit',
            'method': 'get_random_mysql',
            "table": self.table
        })
        return False

    def get_big_query_records_from_sample(self, sample: list) -> DataFrame:
        primary_ids = self.primary_id.split(',')
        or_statements = []
        # get the same items from the mysql random query in big query
        for item in sample:
            pk_statements = []
            for key in primary_ids:
                if type(item[key]) is int:
                    pk_statements.append(f"`{key}` = {item[key]}")
                else:
                    pk_statements.append(f"`{key}` = '{item[key]}'")
            if type(item[self.watched_column]) is int:
                watched_condition = f"AND `{self.watched_column}` = {item[self.watched_column]}"
            else:
                if item[self.watched_column] is None:
                    watched_condition = f"AND `{self.watched_column}` IS NULL"
                else:
                    watched_condition = f"AND `{self.watched_column}` = '{item[self.watched_column]}'"
            or_statements.append(
                f"({' AND '.join(pk_statements)} {watched_condition})")
        query = [
            f"SELECT *", f"FROM {self.definitions['data_set']}.{self.table}",
            f"WHERE {' OR '.join(or_statements)}", "ORDER BY"
        ]
        order_by = []
        for key in primary_ids:
            order_by.append(f"{key} ASC")
        query.append(', '.join(order_by))

        result = self.big_query_client.query(' '.join(query))

        if not result:
            self.sd_logger.error({'error': self.big_query_client.errors}, {
                'class': 'Audit',
                'method': 'get_big_query_records_from_sample',
                "table": self.table
            })
            return False
        output = result.to_dataframe()
        return output

    def convert_mysql_to_data_frame(
            self, mysql_data: list) -> Union[DataFrame, bool]:
        self.big_query_client.set_table_ref(self.table)
        bq_schema = self.big_query_client.get_schema()
        schema = service_helpers.convert_schema_to_dict(bq_schema)

        if len(mysql_data[0]) is not len(schema.keys()):
            self.sd_logger.critical(
                {
                    'message': "Schema and data length mismatch",
                    'schema_length': len(schema.keys()),
                    'data_length': len(mysql_data[0])
                }, {
                    'class': 'Audit',
                    'method': 'convert_mysql_to_data_frame',
                    'table': self.table
                })
            return False
        data_frame = pd.DataFrame.from_records(mysql_data,
                                               columns=schema.keys())

        try:
            df = service_helpers.data_frame_to_schema(data_frame,
                                                      schema,
                                                      utc=True)
        except ValueError as e:
            self.sd_logger.critical({'message': 'Error: {}'.format(e)}, {
                'class': 'Audit',
                'method': 'transform_data_frame_to_match_big_query_schema',
                'table': self.table
            })
            return False
        return df

    def audit_from_sample(self, mysql_data: DataFrame,
                          big_query_data: DataFrame) -> bool:
        # test if data frames are equal -  this will fail in most cases to do the poor data quality from sources
        result = mysql_data.equals(big_query_data)
        if result:
            return True
        # check if the number of returned rows are the same
        # this check is useful because of the strictness of the queries that generate these DataFrames
        if mysql_data.shape[0] == big_query_data.shape[0]:
            return True

        self.sd_logger.info(
            {
                'message': f"Audit Failure: {self.table}",
                'DataFrame.equals': result,
                'mysql.shape': mysql_data.shape[0],
                'big_query.shape': big_query_data.shape[0]
            }, {
                'class': 'Audit',
                'method': 'audit_from_sample',
                'table': self.table
            })
        return False