# Test and Train event cuts #TrainCut = '%s & EventForTraining==1' % TCut #EvalCut = '%s & EventForTraining==0' % TCut TrainCut= TCut +' & evt%2==0' EvalCut = TCut +' & evt%2!=0' cuts = [TrainCut,EvalCut] print '\n ------> with Train Cuts: ', TrainCut print ' Test Cuts : ', EvalCut samples = [] samples = info.get_samples(signals+backgrounds) tc = TreeCache(cuts,samples,path,config) output = ROOT.TFile.Open(fnameOutput, "RECREATE") print '\n\t>>> READING EVENTS <<<\n' signal_samples = info.get_samples(signals) background_samples = info.get_samples(backgrounds) #TRAIN trees Tbackgrounds = [] TbScales = [] Tsignals = [] TsScales = [] #EVAL trees Ebackgrounds = []
newtree.Fill() print "Exit loop" newtree.AutoSave() print "Save" output.Close() print "Close" targetStorage = ( pathOUT.replace("gsidcap://t3se01.psi.ch:22128/", "srm://t3se01.psi.ch:8443/srm/managerv2?SFN=") + "/" + job.prefix + job.identifier + ".root" ) if TreeCache.get_slc_version() == "111SLC5": # NOT WORKING !!! ALWAYS USE SRM command = "lcg-del -b -D srmv2 -l %s" % (targetStorage) print (command) subprocess.call([command], shell=True) command = "lcg-cp -b -D srmv2 file:///%s %s" % ( tmpDir + "/" + job.prefix + job.identifier + ".root", targetStorage, ) print (command) subprocess.call([command], shell=True) else: command = "srmrm %s" % (targetStorage) print (command) subprocess.call([command], shell=True) command = "srmcp -2 -globus_tcp_port_range 20000,25000 file:///%s %s" % ( tmpDir + "/" + job.prefix + job.identifier + ".root",
print 'after the selections, backgrounds are', backgrounds print 'after the selections, signals are', signals samples = [] samples = info.get_samples(signals + backgrounds) print "XXXXXXXXXXXXXXXX" print 'filelist is', filelist #tc = TreeCache(cuts,samples,path,config, []) #to be compatible with mergecaching tc = TreeCache( cuts, samples, path, config, filelist=filelist, mergeplot=opts.mergeplot, sample_to_merge=sample_to_cache_, mergeCachingPart=mergeCachingPart, plotMergeCached=opts.mergecachingplot, remove_sys=remove_sys_ ) # created cached tree i.e. create new skimmed trees using the list of cuts #for mergesubcaching step, need to continue even if some root files are missing to perform the caching in parallel if sample_to_cache_ or mergeCachingPart: tc = TreeCache(cuts, samples, path, config, filelist=filelist, mergeplot=opts.mergeplot, sample_to_merge=None,
MVA_Vars['Nominal'] = MVA_Vars['Nominal'].split(' ') #Infofile info = ParseInfo(samplesinfo, path) #Workdir workdir = ROOT.gDirectory.GetPath() TrainCut = '%s & EventForTraining==1' % TCut EvalCut = '%s & EventForTraining==0' % TCut cuts = [TrainCut, EvalCut] samples = [] samples = info.get_samples(signals + backgrounds) tc = TreeCache(cuts, samples, path, config) output = ROOT.TFile.Open(fnameOutput, "RECREATE") print '\n\t>>> READING EVENTS <<<\n' signal_samples = info.get_samples(signals) background_samples = info.get_samples(backgrounds) #TRAIN trees Tbackgrounds = [] TbScales = [] Tsignals = [] TsScales = [] #EVAL trees Ebackgrounds = []