Exemplo n.º 1
0
def test_scrump_nan_zero_mean_self_join(percentages):
    T = np.array([-1, 0, 1, np.inf, 1, 0, -1])

    m = 3
    zone = int(np.ceil(m / 4))

    for percentage in percentages:
        seed = np.random.randint(100000)

        np.random.seed(seed)
        ref_mp = naive.scrump(T, m, T, percentage, zone, False, None)
        ref_P = ref_mp[:, 0]
        ref_I = ref_mp[:, 1]
        ref_left_I = ref_mp[:, 2]
        ref_right_I = ref_mp[:, 3]

        np.random.seed(seed)
        approx = scrump(T, m, percentage=percentage, pre_scrump=False)
        approx.update()
        comp_P = approx.P_
        comp_I = approx.I_
        comp_left_I = approx.left_I_
        comp_right_I = approx.right_I_

        naive.replace_inf(ref_P)
        naive.replace_inf(comp_P)

        npt.assert_almost_equal(ref_P, comp_P)
        npt.assert_almost_equal(ref_I, comp_I)
        npt.assert_almost_equal(ref_left_I, comp_left_I)
        npt.assert_almost_equal(ref_right_I, comp_right_I)
Exemplo n.º 2
0
def test_scrump_self_join_larger_window(T_A, T_B, m, percentages):
    if len(T_B) > m:
        zone = int(np.ceil(m / 4))

        for percentage in percentages:
            seed = np.random.randint(100000)

            np.random.seed(seed)
            ref_mp = naive.scrump(T_B, m, T_B, percentage, zone, False, None)
            ref_P = ref_mp[:, 0]
            ref_I = ref_mp[:, 1]
            ref_left_I = ref_mp[:, 2]
            ref_right_I = ref_mp[:, 3]

            np.random.seed(seed)
            approx = scrump(T_B,
                            m,
                            ignore_trivial=True,
                            percentage=percentage,
                            pre_scrump=False)
            approx.update()
            comp_P = approx.P_
            comp_I = approx.I_
            comp_left_I = approx.left_I_
            comp_right_I = approx.right_I_

            naive.replace_inf(ref_P)
            naive.replace_inf(comp_P)

            npt.assert_almost_equal(ref_P, comp_P)
            npt.assert_almost_equal(ref_I, comp_I)
            npt.assert_almost_equal(ref_left_I, comp_left_I)
            npt.assert_almost_equal(ref_right_I, comp_right_I)
Exemplo n.º 3
0
def test_scrump_A_B_join_swap(T_A, T_B, percentages):
    m = 3

    for percentage in percentages:
        seed = np.random.randint(100000)

        np.random.seed(seed)
        ref_mp = naive.scrump(T_B, m, T_A, percentage, None, False, None)
        ref_P = ref_mp[:, 0]
        # ref_I = ref_mp[:, 1]
        ref_left_I = ref_mp[:, 2]
        ref_right_I = ref_mp[:, 3]

        np.random.seed(seed)
        approx = scrump(T_B,
                        m,
                        T_A,
                        ignore_trivial=False,
                        percentage=percentage,
                        pre_scrump=False)
        approx.update()
        comp_P = approx.P_
        # comp_I = approx.I_
        comp_left_I = approx.left_I_
        comp_right_I = approx.right_I_

        naive.replace_inf(ref_P)
        naive.replace_inf(comp_P)

        npt.assert_almost_equal(ref_P, comp_P)
        npt.assert_almost_equal(ref_P, comp_P)
        npt.assert_almost_equal(ref_left_I, comp_left_I)
        npt.assert_almost_equal(ref_right_I, comp_right_I)
Exemplo n.º 4
0
def test_stimp_max_m(T):
    threshold = 0.2
    percentage = 0.01
    min_m = 3
    max_m = 5
    n = T.shape[0] - min_m + 1

    seed = np.random.randint(100000)

    np.random.seed(seed)
    pan = stimp(
        T,
        min_m=min_m,
        max_m=max_m,
        step=1,
        percentage=percentage,
        pre_scrump=True,
        # normalize=True,
    )

    for i in range(n):
        pan.update()

    ref_PAN = np.full((pan.M_.shape[0], T.shape[0]), fill_value=np.inf)

    np.random.seed(seed)
    for idx, m in enumerate(pan.M_[:n]):
        zone = int(np.ceil(m / 4))
        s = zone
        tmp_P, tmp_I = naive.prescrump(T, m, T, s=s, exclusion_zone=zone)
        ref_mp = naive.scrump(T, m, T, percentage, zone, True, s)
        for i in range(ref_mp.shape[0]):
            if tmp_P[i] < ref_mp[i, 0]:
                ref_mp[i, 0] = tmp_P[i]
                ref_mp[i, 1] = tmp_I[i]
        ref_PAN[pan._bfs_indices[idx], :ref_mp.shape[0]] = ref_mp[:, 0]

    # Compare raw pan
    cmp_PAN = pan._PAN

    naive.replace_inf(ref_PAN)
    naive.replace_inf(cmp_PAN)

    npt.assert_almost_equal(ref_PAN, cmp_PAN)

    # Compare transformed pan
    cmp_pan = pan.PAN_
    ref_pan = naive.transform_pan(pan._PAN, pan._M, threshold,
                                  pan._bfs_indices, pan._n_processed)

    naive.replace_inf(ref_pan)
    naive.replace_inf(cmp_pan)

    npt.assert_almost_equal(ref_pan, cmp_pan)
Exemplo n.º 5
0
def test_stimp_max_m(T):
    percentage = 0.01
    min_m = 3
    max_m = 5
    n = T.shape[0] - min_m + 1

    seed = np.random.randint(100000)

    np.random.seed(seed)
    pmp = stimp(
        T,
        min_m=min_m,
        max_m=max_m,
        step=1,
        percentage=percentage,
        pre_scrump=True,
        normalize=True,
    )

    for i in range(n):
        pmp.update()

    ref_P = np.full((pmp.M_.shape[0], T.shape[0]), fill_value=np.inf)
    ref_I = np.ones((pmp.M_.shape[0], T.shape[0]), dtype=np.int64) * -1

    np.random.seed(seed)
    for idx, m in enumerate(pmp.M_[:n]):
        zone = int(np.ceil(m / 4))
        s = zone
        tmp_P, tmp_I = naive.prescrump(T, m, T, s=s, exclusion_zone=zone)
        ref_mp = naive.scrump(T, m, T, percentage, zone, True, s)
        for i in range(ref_mp.shape[0]):
            if tmp_P[i] < ref_mp[i, 0]:
                ref_mp[i, 0] = tmp_P[i]
                ref_mp[i, 1] = tmp_I[i]
        ref_P[pmp.bfs_indices_[idx], :ref_mp.shape[0]] = ref_mp[:, 0]
        ref_I[pmp.bfs_indices_[idx], :ref_mp.shape[0]] = ref_mp[:, 1]

    comp_P = pmp.P_
    comp_I = pmp.I_

    naive.replace_inf(ref_P)
    naive.replace_inf(ref_I)
    naive.replace_inf(comp_P)
    naive.replace_inf(comp_I)

    npt.assert_almost_equal(ref_P, comp_P)
    npt.assert_almost_equal(ref_I, comp_I)
Exemplo n.º 6
0
def test_scrump_plus_plus_A_B_join(T_A, T_B, percentages):
    m = 3
    zone = int(np.ceil(m / 4))

    for s in range(1, zone + 1):
        for percentage in percentages:
            seed = np.random.randint(100000)

            np.random.seed(seed)
            ref_P, ref_I = naive.prescrump(T_A, m, T_B, s=s)
            ref_mp = naive.scrump(T_A, m, T_B, percentage, None, False, None)
            for i in range(ref_mp.shape[0]):
                if ref_P[i] < ref_mp[i, 0]:
                    ref_mp[i, 0] = ref_P[i]
                    ref_mp[i, 1] = ref_I[i]
            ref_P = ref_mp[:, 0]
            ref_I = ref_mp[:, 1]
            ref_left_I = ref_mp[:, 2]
            ref_right_I = ref_mp[:, 3]

            approx = scrump(
                T_A,
                m,
                T_B,
                ignore_trivial=False,
                percentage=percentage,
                pre_scrump=True,
                s=s,
            )
            approx.update()
            comp_P = approx.P_
            comp_I = approx.I_
            comp_left_I = approx.left_I_
            comp_right_I = approx.right_I_

            naive.replace_inf(ref_P)
            naive.replace_inf(comp_P)

            npt.assert_almost_equal(ref_P, comp_P)
            npt.assert_almost_equal(ref_I, comp_I)
            npt.assert_almost_equal(ref_left_I, comp_left_I)
            npt.assert_almost_equal(ref_right_I, comp_right_I)
Exemplo n.º 7
0
def test_scrump_nan_inf_self_join(T_A, T_B, substitute, substitution_locations,
                                  percentages):
    m = 3

    T_B_sub = T_B.copy()

    for substitution_location in substitution_locations:
        T_B_sub[:] = T_B[:]
        T_B_sub[substitution_location] = substitute

        zone = int(np.ceil(m / 4))

        for percentage in percentages:
            seed = np.random.randint(100000)

            np.random.seed(seed)
            ref_mp = naive.scrump(T_B_sub, m, T_B_sub, percentage, zone, False,
                                  None)
            ref_P = ref_mp[:, 0]
            ref_I = ref_mp[:, 1]
            ref_left_I = ref_mp[:, 2]
            ref_right_I = ref_mp[:, 3]

            np.random.seed(seed)
            approx = scrump(T_B_sub,
                            m,
                            percentage=percentage,
                            pre_scrump=False)
            approx.update()
            comp_P = approx.P_
            comp_I = approx.I_
            comp_left_I = approx.left_I_
            comp_right_I = approx.right_I_

            naive.replace_inf(ref_P)
            naive.replace_inf(comp_P)

            npt.assert_almost_equal(ref_P, comp_P)
            npt.assert_almost_equal(ref_I, comp_I)
            npt.assert_almost_equal(ref_left_I, comp_left_I)
            npt.assert_almost_equal(ref_right_I, comp_right_I)
Exemplo n.º 8
0
def test_scrump_constant_subsequence_self_join(percentages):
    T = np.concatenate((np.zeros(20,
                                 dtype=np.float64), np.ones(5,
                                                            dtype=np.float64)))

    m = 3
    zone = int(np.ceil(m / 4))

    for percentage in percentages:
        seed = np.random.randint(100000)

        np.random.seed(seed)
        ref_mp = naive.scrump(T, m, T, percentage, zone, False, None)
        ref_P = ref_mp[:, 0]
        ref_I = ref_mp[:, 1]
        ref_left_I = ref_mp[:, 2]
        ref_right_I = ref_mp[:, 3]

        np.random.seed(seed)
        approx = scrump(T,
                        m,
                        ignore_trivial=True,
                        percentage=percentage,
                        pre_scrump=False)
        approx.update()
        comp_P = approx.P_
        comp_I = approx.I_
        comp_left_I = approx.left_I_
        comp_right_I = approx.right_I_

        naive.replace_inf(ref_P)
        naive.replace_inf(comp_P)

        npt.assert_almost_equal(ref_P, comp_P)
        npt.assert_almost_equal(ref_I, comp_I)
        npt.assert_almost_equal(ref_left_I, comp_left_I)
        npt.assert_almost_equal(ref_right_I, comp_right_I)
Exemplo n.º 9
0
def test_scrump_identical_subsequence_self_join(percentages):
    identical = np.random.rand(8)
    T = np.random.rand(20)
    T[1:1 + identical.shape[0]] = identical
    T[11:11 + identical.shape[0]] = identical
    m = 3
    zone = int(np.ceil(m / 4))

    for percentage in percentages:
        seed = np.random.randint(100000)

        np.random.seed(seed)
        ref_mp = naive.scrump(T, m, T, percentage, zone, False, None)
        ref_P = ref_mp[:, 0]
        # ref_I = ref_mp[:, 1]
        # ref_left_I = ref_mp[:, 2]
        # ref_right_I = ref_mp[:, 3]

        np.random.seed(seed)
        approx = scrump(T,
                        m,
                        ignore_trivial=True,
                        percentage=percentage,
                        pre_scrump=False)
        approx.update()
        comp_P = approx.P_
        # comp_I = approx.I_
        # comp_left_I = approx.left_I_
        # comp_right_I = approx.right_I_

        naive.replace_inf(ref_P)
        naive.replace_inf(comp_P)

        npt.assert_almost_equal(ref_P,
                                comp_P,
                                decimal=config.STUMPY_TEST_PRECISION)