Exemplo n.º 1
0
def cm1_prep(mem, start, end, restart_name='cm1out_rst_000001.nc'):
    """ Function to write new namelist.input and check to be
        sure files are in order 

    """
    # If this is a restart, be sure we have the right file
    if start != 0:
        # Try loading the restart file with the correct name
        if not os.path.exists(restart_name):
            error_handler(
                'unable to find file {:s} in member {:d} directory'.format(
                    restart_name, mem), 'cm1_prep')
        # Make sure that the restart file is indeed at the correct time
        rstnc = Dataset(restart_name, 'r')
        time_sec = int(rstnc.variables['time'][0])
        rstnc.close()
        if time_sec != start:
            error_handler(
                'restart file {:s} for member {:d} does not match current cycle time: {:d} min.'
                .format(restart_name, mem, start), 'cm1_prep')

    # Find out how long the run should be
    dtime = int(end - start)

    # Write the namelist
    if not os.path.exists('namelist.input'):
        os.system('cp {:s}/namelist.input .'.format(dir_dom))
    nmld = read_namelist('namelist.input')
    if start != 0:
        irst = 1
        nmld['param2']['irst'] = 1
        nmld['param2']['rstnum'] = 1
        nmld['param1']['run_time'] = dtime
        nmld['param1']['rstfrq'] = cycle_len
        write_namelist(nmld, 'namelist.input')
        #os.system('./write_cm1_namelist.py -r {:s} -l {:d}'.format(restart_name, dtime))
    else:
        nmld['param1']['run_time'] = dtime
        nmld['param1']['rstfrq'] = cycle_len
        write_namelist(nmld, 'namelist.input')
        #os.system('./write_cm1_namelist.py -l {:d}'.format(dtime))
    if not os.path.exists('namelist.input'):
        error_handler('Unable to find namelist.input', 'wrf_prep')
Exemplo n.º 2
0
def cm1_prep(mem,start,end,restart_name='cm1out_rst_000001.nc'):
    """ Function to write new namelist.input and check to be
        sure files are in order 

    """
    # If this is a restart, be sure we have the right file
    if start != 0:
        # Try loading the restart file with the correct name
        if not os.path.exists(restart_name):
            error_handler('unable to find file {:s} in member {:d} directory'.format(restart_name, mem), 'cm1_prep')
        # Make sure that the restart file is indeed at the correct time
        rstnc = Dataset(restart_name, 'r')
        time_sec = int(rstnc.variables['time'][0])
        rstnc.close()
        if time_sec != start:
            error_handler('restart file {:s} for member {:d} does not match current cycle time: {:d} min.'.format(restart_name, mem, start), 'cm1_prep')
    

    # Find out how long the run should be 
    dtime = int(end-start)

    # Write the namelist
    if not os.path.exists('namelist.input'):
        os.system('cp {:s}/namelist.input .'.format(dir_dom))
    nmld = read_namelist('namelist.input')
    if start != 0:
        irst = 1
        nmld['param2']['irst'] = 1
        nmld['param2']['rstnum'] = 1
        nmld['param1']['run_time'] = dtime
        nmld['param1']['rstfrq'] = cycle_len
        write_namelist(nmld, 'namelist.input')
        #os.system('./write_cm1_namelist.py -r {:s} -l {:d}'.format(restart_name, dtime))
    else:
        nmld['param1']['run_time'] = dtime
        nmld['param1']['rstfrq'] = cycle_len
        write_namelist(nmld, 'namelist.input')
        #os.system('./write_cm1_namelist.py -l {:d}'.format(dtime))
    if not os.path.exists('namelist.input'):
        error_handler('Unable to find namelist.input','wrf_prep')
Exemplo n.º 3
0
parser = OptionParser(description=desc)

parser.add_option('-d','--datein',dest='datein',action='store',type='string',default=cycle_len,\
                  help='Date of assimilation cycle (YYYYMMDDHH)')
parser.add_option('-m','--mpi_procs',dest='mpi_procs',action='store',type='string',\
                  default=mpi_numprocs_filter, help='Number of processors to use for MPI run')

(opts, args) = parser.parse_args()
#datein = datetime.strptime(opts.datein,'%Y%m%d%H')
#prevdate = datein - timedelta(minutes=int(fct_len))
datein = int(opts.datein)
prevdate = datein - cycle_len
mpi_numprocs_filter = int(opts.mpi_procs)
# Get the namelist values
nmld = read_namelist('input.nml')
cm1nmld = read_namelist('namelist.input')

# Change these values to only run certain sections of the code
PRE_CLEAN = True
PRE_CHECK = True
RUN_FILTER = True
ARCHIVE_FILES = True
POST_CLEAN = True


def main():

    # First step--write the namelist
    # Need to know if we are trying to apply adaptive
    # inflation from the previous time or not.  If we are using it,
Exemplo n.º 4
0
parser = OptionParser(description=desc)

parser.add_option('-d','--datein',dest='datein',action='store',type='string',default=cycle_len,\
                  help='Date of assimilation cycle (YYYYMMDDHH)')
parser.add_option('-m','--mpi_procs',dest='mpi_procs',action='store',type='string',\
                  default=mpi_numprocs_filter, help='Number of processors to use for MPI run')

(opts,args) = parser.parse_args()
#datein = datetime.strptime(opts.datein,'%Y%m%d%H')
#prevdate = datein - timedelta(minutes=int(fct_len))
datein = int(opts.datein)
prevdate = datein - cycle_len
mpi_numprocs_filter = int(opts.mpi_procs)
# Get the namelist values
nmld = read_namelist('input.nml')
cm1nmld = read_namelist('namelist.input')

# Change these values to only run certain sections of the code
PRE_CLEAN       = True
PRE_CHECK       = True
RUN_FILTER      = True
ARCHIVE_FILES   = True
POST_CLEAN      = True


def main():
 
    # First step--write the namelist
    # Need to know if we are trying to apply adaptive
    # inflation from the previous time or not.  If we are using it,
Exemplo n.º 5
0
        obsdir, assim_target_date)):
    print("Could not find obs sequence file:")
    print("{:s}/{:%Y%m%d%H%M%S}_obs_seq.prior".format(obsdir,
                                                      assim_target_date))
    print("Aborting.")
    exit(1)
os.system(
    '{copy} {obsdir}/{assim_target_date:%Y%m%d%H%M%S}_obs_seq.prior obs_seq.prior'
    .format(**locals()))

# Make a subdirectory in the archive directory to hold output for this cycle
os.system('mkdir {:s}/archive/{:%Y%m%d%H%M%S}'.format(centraldir,
                                                      assim_target_date))

# Load the input.nml file and change it to reflect this time
dartnml = read_namelist('input.nml')

#> if not initializing, we need to ensure that the output inflation files from
#> previous cycle are used as input for next cycle
if not initialize:
    dartnml['filter_nml']['inf_initial_from_restart'] = [True, True]
    dartnml['filter_nml']['inf_sd_initial_from_restart'] = [True, True]

# Change the name of the template file
dartnml['model_nml']['cm1_template_file'] = restart_filename

# Set the right obs sequence name
dartnml['filter_nml']['obs_sequence_in_name'] = 'obs_seq.prior'

# Set the number of ensemble members
dartnml['filter_nml']['ens_size'] = ens_size
Exemplo n.º 6
0
# set this to "true"

# this script is going to determine several things by reading the input.nml
# file which contains the &filter_nml namelist.  make sure it exists first.
#if ( ! -e input.nml ) then
if not os.path.exists('input.nml'):
    print("ERROR - input.nml does not exist in local directory.")
    print("ERROR - input.nml needed to determine several settings for this script.")
    exit(1)


# detect whether the model is supposed to run as an MPI job or not
# by reading the "async = " from the &filter_nml namelist in input.nml.
# some namelists contain the same string - be sure to get the filter_nml one
# by grepping for lines which follow it.
nmld = read_namelist('input.nml')
async_type = nmld['filter_nml']['async']

if (async_type == 0) or (async_type == 2):
    parallel_model = False
elif (async_type == 4):
    parallel_model = True
else: 
    print("cannot autodetect async value in the filter_nml namelist in input.nml file.")
    print("hardcode the parallel_model shell variable and comment out these lines.")
    exit(-1)
    parallel_model = False

# Determine the number of ensemble members from input.nml,
# as well as the command for advancing the model.
num_ens = nmld['filter_nml']['ens_size']
Exemplo n.º 7
0
def build_obs_structure(intime, rst_file, gridspace=16):
    """ Function to specify what variables we want and how dense they should be """
    #from make_namelist_dart import set_namelist_sectors, write_namelist
    #from write_cm1_namelist import set_namelist_defaults
    from namelist_utils import read_namelist, write_dart_namelist

    # Generate the DART namelist structure so we
    # can query (and modify) it
    dartnml = read_namelist('input.nml')
    cm1nml = read_namelist('namelist.input')
    # Build the epoch from the cm1 namelist
    param11 = cm1nml['param11']
    startdate = datetime(param11['year'], param11['month'],\
                     param11['day'], param11['hour'],\
                     param11['minute'], param11['second'])
    
    # Parse out the observations to assimilate
    use_obs = dartnml['obs_kind_nml']['assimilate_these_obs_types']
    # I'm just testing this for now
    #use_obs = use_obs[0:2]
    use_obs = ['LAND_SFC_PRESSURE']
    print(use_obs)
    # Put time as datetime
    intime = startdate + timedelta(seconds=intime)
    epoch = datetime(1601,1,1,0)
    print("Indate:", intime)

    # Figure out the grid structure
    dx = cm1nml['param1']['dx']
    dy = cm1nml['param1']['dy']
    nx = cm1nml['param0']['nx']
    ny = cm1nml['param0']['ny']

    # Now figure out how many obs we'll need
    gridspace *= 1000
    obx = range(int(dx/2.),int(nx*dx),gridspace)
    oby = range(int(dy/2.),int(ny*dx),gridspace)
    #obx = [16000]
    #oby = [16000]
    total_obs = len(obx)*len(oby)*len(use_obs)
    print("Total number of obs:", total_obs)
   
    # Write a new dart namelist for the current time
    delt = intime - epoch
    #dartnml['perfect_model_obs_nml']['first_obs_days'] = str(delt.days)
    #dartnml['perfect_model_obs_nml']['first_obs_seconds'] = str(delt.seconds)
    #dartnml['perfect_model_obs_nml']['last_obs_days'] = str(delt.days)
    #dartnml['perfect_model_obs_nml']['last_obs_seconds'] = str(delt.seconds)
    #dartnml['perfect_model_obs_nml']['init_time_days'] = str(delt.days)
    #dartnml['perfect_model_obs_nml']['init_time_seconds'] = str(delt.seconds)
    dartnml['perfect_model_obs_nml']['obs_seq_in_file_name'] = 'obs_seq.in'
    dartnml['perfect_model_obs_nml']['restart_in_file_name'] = rst_file

    # Make sure we have the right io pattern
    dartnml['io_filenames_nml']['restart_in_stub'] = 'notinuse'
    dartnml['io_filenames_nml']['overwrite_input'] = False
    dartnml['io_filenames_nml']['rpointer'] = True
    dartnml['io_filenames_nml']['rpointer_file'] = 'input_filelist.txt'

    # Write the pointer file
    with open('input_filelist.txt', 'w') as pointerfile:
        pointerfile.write(rst_file)
    os.system('mv input_filelist.txt {:s}/'.format(dir_obs))

    # Write the modified namelist
    write_dart_namelist(dartnml)

    # Set up the input file
    with open('obs_seq_input.txt','w') as infile:
        infile.write(str(total_obs)+'\n') # Total num obs
        infile.write('0\n') # 0 copies
        infile.write('0\n') # 0 QC values
        for obtype in use_obs:
            for x in obx:
                for y in oby:
                    infile.write('0\n')
                    infile.write(obtype+'\n') # Identify ob type
                    infile.write('0\n') # Specify location
                    infile.write(str(x)+'\n') # X coordinate
                    infile.write(str(y)+'\n') # Y coordinate
                    infile.write('0\n') # Z coordinate
                    infile.write('{:d} {:d} {:d} {:d} {:d} {:d}\n'.format(\
                        intime.year, intime.month,\
                        intime.day, intime.hour,\
                        intime.minute, intime.second))
                    infile.write(str(error_var[obtype])+'\n') # Error variance
        infile.write('obs_seq.in\n')
    # Move these files to the obs dir
    if os.path.exists(os.path.join(dir_obs, 'input.nml')):
        os.system('rm -f {:s}'.format(os.path.join(dir_obs, 'input.nml')))
    if os.path.exists(os.path.join(dir_obs, 'obs_seq_input.txt')):
        os.system('rm -f {:s}'.format(os.path.join(dir_obs, 'obs_seq_input.txt')))
    os.system('mv obs_seq_input.txt {:s}'.format(dir_obs))
    os.system('cp input.nml {:s}'.format(dir_obs))

    return None 
Exemplo n.º 8
0
def build_obs_structure(intime, rst_file, gridspace=4):
    """ Function to specify what variables we want and how dense they should be """
    #from make_namelist_dart import set_namelist_sectors, write_namelist
    #from write_cm1_namelist import set_namelist_defaults
    from namelist_utils import read_namelist, write_dart_namelist

    # Generate the DART namelist structure so we
    # can query (and modify) it
    dartnml = read_namelist('input.nml')
    cm1nml = read_namelist('namelist.input')
    # Build the epoch from the cm1 namelist
    param11 = cm1nml['param11']
    startdate = datetime(param11['year'], param11['month'],\
                     param11['day'], param11['hour'],\
                     param11['minute'], param11['second'])

    # Parse out the observations to assimilate
    use_obs = dartnml['obs_kind_nml']['assimilate_these_obs_types']
    # I'm just testing this for now
    #use_obs = use_obs[0:2]
    #use_obs = ['LAND_SFC_U_WIND_COMPONENT', 'LAND_SFC_V_WIND_COMPONENT', 'LAND_SFC_TEMPERATURE',
    #           'LAND_SFC_SPECIFIC_HUMIDITY']
    use_obs = [
        'TEMPERATURE_2M', 'SURFACE_PRESSURE', 'SPECIFIC_HUMIDITY_2M',
        'V_WIND_10M', 'U_WIND_10M'
    ]
    print(use_obs)
    # Put time as datetime
    intime = startdate + timedelta(seconds=intime)
    epoch = datetime(1601, 1, 1, 0)
    print("Indate:", intime)

    # Figure out the grid structure
    dx = cm1nml['param1']['dx']
    dy = cm1nml['param1']['dy']
    nx = cm1nml['param0']['nx']
    ny = cm1nml['param0']['ny']

    # Now figure out how many obs we'll need
    gridspace *= 1000
    obx = range(int(dx / 2.), int(nx * dx), gridspace)
    oby = range(int(dy / 2.), int(ny * dx), gridspace)
    #obx = [16000]
    #oby = [16000]
    total_obs = len(obx) * len(oby) * len(use_obs)
    print("Total number of obs:", total_obs)

    # Write a new dart namelist for the current time
    delt = intime - epoch
    #dartnml['perfect_model_obs_nml']['first_obs_days'] = str(delt.days)
    #dartnml['perfect_model_obs_nml']['first_obs_seconds'] = str(delt.seconds)
    #dartnml['perfect_model_obs_nml']['last_obs_days'] = str(delt.days)
    #dartnml['perfect_model_obs_nml']['last_obs_seconds'] = str(delt.seconds)
    #dartnml['perfect_model_obs_nml']['init_time_days'] = str(delt.days)
    #dartnml['perfect_model_obs_nml']['init_time_seconds'] = str(delt.seconds)
    dartnml['perfect_model_obs_nml']['obs_seq_in_file_name'] = 'obs_seq.in'
    dartnml['perfect_model_obs_nml']['restart_in_file_name'] = rst_file

    # Make sure we have the right io pattern
    dartnml['io_filenames_nml']['restart_in_stub'] = 'notinuse'
    dartnml['io_filenames_nml']['overwrite_input'] = False
    dartnml['io_filenames_nml']['rpointer'] = True
    dartnml['io_filenames_nml']['rpointer_file'] = 'input_filelist.txt'

    # Write the pointer file
    with open('input_filelist.txt', 'w') as pointerfile:
        pointerfile.write(rst_file)
    os.system('mv input_filelist.txt {:s}/'.format(dir_obs))

    # Write the modified namelist
    write_dart_namelist(dartnml)

    # Set up the input file
    with open('obs_seq_input.txt', 'w') as infile:
        infile.write(str(total_obs) + '\n')  # Total num obs
        infile.write('0\n')  # 0 copies
        infile.write('0\n')  # 0 QC values
        for obtype in use_obs:
            for x in obx:
                for y in oby:
                    infile.write('0\n')
                    infile.write(obtype + '\n')  # Identify ob type
                    infile.write('0\n')  # Specify location
                    infile.write(str(x) + '\n')  # X coordinate
                    infile.write(str(y) + '\n')  # Y coordinate
                    infile.write(str(heights[obtype]) + '\n')  # Z coordinate
                    infile.write('{:d} {:d} {:d} {:d} {:d} {:d}\n'.format(\
                        intime.year, intime.month,\
                        intime.day, intime.hour,\
                        intime.minute, intime.second))
                    infile.write(str(error_var[obtype]) +
                                 '\n')  # Error variance
        infile.write('obs_seq.in\n')
    # Move these files to the obs dir
    if os.path.exists(os.path.join(dir_obs, 'input.nml')):
        os.system('rm -f {:s}'.format(os.path.join(dir_obs, 'input.nml')))
    if os.path.exists(os.path.join(dir_obs, 'obs_seq_input.txt')):
        os.system('rm -f {:s}'.format(
            os.path.join(dir_obs, 'obs_seq_input.txt')))
    os.system('mv obs_seq_input.txt {:s}'.format(dir_obs))
    os.system('cp input.nml {:s}'.format(dir_obs))

    return None
Exemplo n.º 9
0
os.system(
    '{copy} {truthdir}/input_sounding       {dirname}            || exit 2'.
    format(**locals()))
os.system(
    '{copy} {truthdir}/LANDUSE.TBL          {dirname}            || exit 2'.
    format(**locals()))
os.system(
    '{copy} {truthdir}/namelist.input       {dirname}/namelist.input.template || exit 2'
    .format(**locals()))

# Enforce certain assumptions.
# 1) we are always starting from a netCDF file ... irst == 1
# 2) restart always be named cm1_out_rst_000001.nc ... rstnum == 1
# 3) the run_time value will be a dummy string
# Python version --use namelist utilities
nmld = read_namelist(os.path.join(dirname, 'namelist.input.template'))
nmld['param2']['irst'] = 1
nmld['param2']['rstnum'] = 1
nmld['param1']['run_time'] = cm1_forecast_length
nmld['param1']['rstfrq'] = cm1_forecast_length
write_namelist(nmld, os.path.join(dirname, 'namelist.input.template'))

os.system('{remove} input_filelist.txt'.format(**locals()))

# Python -- write to input_filelist.txt in with
# statement.  This will automatically close
# the file when we are out of the block
with open('input_filelist.txt', 'w') as outfile:
    outfile.write(os.path.join(dirname, filename) + '\n')

# When perfect_model_obs starts, it needs to read the grid information.
Exemplo n.º 10
0
#!/usr/bin/env python

import os, sys, getopt
# Get parameters from ens_dart_param and the default cm1 namelist
from ens_dart_param import *
from namelist_utils import read_namelist, write_namelist
cm1nml = read_namelist(os.path.join(dir_dom, 'namelist.input'))
"""
This is a quickly-reformatted version of the make_ensemble script
from version 1 of this code that makes it compatible with the new
namelist version.  This script will make an ensemble (in serial) with
a number of members as specified in the namelist variable "Ne" or manually
specified from the command line.  The script will copy in all of the necessary
files.  No perturbation of initial conditions is enabled at this time.
LEM 09/2015

"""

(opts, args) = getopt.getopt(sys.argv[1:], 'n:')
for o, a in opts:
    if o == '-n':
        Ne = int(a)


def main():
    DOMDIR = dir_dom
    os.chdir(DOMDIR)
    """
    if os.path.isdir(DOMDIR+'/mems'):
        remove = raw_input('Remove contents of current ensemble directory (0 or 1)?')
        if remove:
Exemplo n.º 11
0
    '{copy} {ensembledir}/input_sounding              . || exit 2'.format(
        **locals()))
os.system(
    '{copy} {ensembledir}/LANDUSE.TBL                 . || exit 2'.format(
        **locals()))
os.system(
    '{copy} {ensembledir}/namelist.input              . || exit 2'.format(
        **locals()))

# Enforce certain assumptions.
# 1) we are always starting from a netCDF file ... irst == 1
# 2) restart always be named cm1_out_rst_000001.nc ... rstnum == 1
# 3) the run_time value will be a dummy string
# Python version --use namelist utilities
# read the namelist
nmld = read_namelist('namelist.input')

# Check for environment variable that
# contains the current forecast length
# Otherwise leave as is
if os.environ.get('CM1_FORECAST_LENGTH') not in [None, '']:
    cm1_forecast_length = float(os.envion.get('CM1_FORECAST_LENGTH'))
    nmld['param1']['run_time'] = cm1_forecast_length
    nmld['param1']['rstfrq'] = cm1_forecast_length

# Set the other namelist requirements and write
nmld['param2']['irst'] = 1
nmld['param2']['rstnum'] = 1
write_namelist(nmld, 'namelist.input')

# Python -- write to input_filelist.txt in with
Exemplo n.º 12
0
#!/usr/bin/env python

import os, sys, getopt
# Get parameters from ens_dart_param and the default cm1 namelist
from ens_dart_param import *
from namelist_utils import read_namelist, write_namelist
cm1nml = read_namelist(os.path.join(dir_dom, 'namelist.input'))

"""
This is a quickly-reformatted version of the make_ensemble script
from version 1 of this code that makes it compatible with the new
namelist version.  This script will make an ensemble (in serial) with
a number of members as specified in the namelist variable "Ne" or manually
specified from the command line.  The script will copy in all of the necessary
files.  No perturbation of initial conditions is enabled at this time.
LEM 09/2015

"""


(opts,args) = getopt.getopt(sys.argv[1:],'n:')
for o,a in opts:
   if o == '-n':
      Ne = int(a)



def main():
    DOMDIR = dir_dom
    os.chdir(DOMDIR)
    """