Exemplo n.º 1
0
def task_correlators():
    for dirname in directories:
        for meson in ['pion', 'kaon']:
            corr_tsv_files = []
            for corr_xml in glob.glob(os.path.join(dirname, 'corr', 'corr.config-*.{}.xml.gz'.format(meson))):
                corr_tsv = names.correlator_tsv(corr_xml, meson)
                corr_tsv_files.append(corr_tsv)
                yield make_single_transform(dirname,
                                            correlators.io_extract_pion_corr,
                                            corr_xml,
                                            corr_tsv)
            
            if len(corr_tsv_files) > 0:
                path_pion_mass = names.tsv_extract(dirname, meson + '_mass')
                yield {
                    'actions': [(correlators.analysis.io_extract_mass, [corr_tsv_files, path_pion_mass])],
                    'name': path_pion_mass,
                    'file_dep': corr_tsv_files,
                    'targets': [path_pion_mass],
                }

                path_effective_mass = names.tsv_extract(dirname, meson + '_effective_mass')
                yield {
                    'actions': [(correlators.analysis.io_effective_mass, [corr_tsv_files, path_effective_mass])],
                    'name': path_effective_mass,
                    'file_dep': corr_tsv_files,
                    'targets': [path_effective_mass],
                }
Exemplo n.º 2
0
def task_running_mean():
    for dirname in directories:
        for window in [100, 10]:
            path_in = names.tsv_extract(dirname, 'AcceptP')
            path_out = names.tsv_extract(dirname, 'AcceptP-running_mean_{}'.format(window))
            yield make_single_transform(dirname,
                                        transforms.io_running_mean,
                                        path_in,
                                        path_out,
                                        window=window)
Exemplo n.º 3
0
def task_wflow():
    for dirname in directories:
        files_t0 = []
        files_w0 = []

        for xml_file in glob.glob(os.path.join(dirname, 'wflow', 'wflow.config-*.out.xml')):
            file_e = names.wflow_xml_shard_name(xml_file, 'e')
            file_t2e = names.wflow_xml_shard_name(xml_file, 't2e')
            file_w = names.wflow_xml_shard_name(xml_file, 'w')
            file_t0 = names.wflow_xml_shard_name(xml_file, 't0')
            file_w0 = names.wflow_xml_shard_name(xml_file, 'w0')

            files_t0.append(file_t0)
            files_w0.append(file_w0)

            yield make_single_transform(dirname,
                                        wflow.io_convert_xml_to_tsv,
                                        xml_file,
                                        file_e)
            yield make_single_transform(dirname,
                                        wflow.io_compute_t2_e,
                                        file_e,
                                        file_t2e)
            yield make_single_transform(dirname,
                                        wflow.io_compute_w,
                                        file_e,
                                        file_w)
            yield make_single_transform(dirname,
                                        wflow.io_compute_intersection,
                                        file_t2e,
                                        file_t0)
            yield make_single_transform(dirname,
                                        wflow.io_compute_intersection,
                                        file_w,
                                        file_w0)

        for name, files in [('t0', files_t0), ('w0', files_w0)]:
            path_out = names.wflow_tsv(dirname, name)
            yield {
                'actions': [(wflow.merge_intersections, [files, path_out])],
                'name': path_out,
                'file_dep': files,
                'targets': [path_out],
            }

        yield make_single_transform(dirname,
                                    wflow.io_w0_to_a,
                                    names.tsv_extract(dirname, 'w0'),
                                    names.tsv_extract(dirname, 'a_mev_from_w0'))
Exemplo n.º 4
0
def task_make_plot():
    tasks = []
    for dirname in directories:
        tasks.append(plot_generic(dirname, 'w_plaq', 'Update Number', 'Plaquette (cold is 1.0)', 'Plaquette'))
        #tasks.append(plot_generic(dirname, 'w_plaq-vs-md_time', 'MD Time', 'Plaquette (cold is 1.0)', 'Plaquette'))

        tasks.append(plot_generic(dirname, 'deltaH', 'Update Number', r'$\Delta H$', 'MD Energy'))
        #tasks.append(plot_generic(dirname, 'deltaH-vs-md_time', 'MD Time', r'$\Delta H$', 'MD Energy', transform_delta_h_md_time))

        tasks.append(plot_generic(dirname, 'minutes_for_trajectory', 'Update Number', r'Minutes', 'Time for Trajectory'))

        tasks.append(plot_generic(dirname, 'n_steps', 'Update Number', r'Step Count (coarsest time scale)', 'Integration Steps'))
        #tasks.append(plot_generic(dirname, 'n_steps-vs-md_time', 'MD Time', r'Step Count (coarsest time scale)', 'Integration Steps'))

        tasks.append(plot_generic(dirname, 'md_time', 'Update Number', r'MD Time', 'MD Distance'))
        tasks.append(plot_generic(dirname, 'tau0', 'Update Number', r'MD Step Size', 'MD Step Size'))

        tasks.append(plot_generic(dirname, 'DeltaDeltaH', 'Update Number', r'$\Delta \Delta H$', 'Reversibility'))
        tasks.append(plot_generic(dirname, 'DeltaDeltaH_over_DeltaH', 'Update Number', r'$\Delta \Delta H / \Delta H$', 'Reversibility'))

        tasks.append(plot_generic(dirname, 'exp_deltaH', 'Update Number', r'$\exp(-\Delta H)$', 'MD EnergeReversibility'))

        tasks.append(plot_generic(dirname, 't0', 'Update Number', r'$t_0$', 'Wilson Flow Scale Setting'))
        tasks.append(plot_generic(dirname, 'w0', 'Update Number', r'$w_0$', 'Wilson Flow Scale Setting'))

        tasks.append(plot_generic(dirname, 'AcceptP', 'Update Number', r'Accepted', 'Acceptance Rate'))
        tasks.append(plot_generic(dirname, 'AcceptP-running_mean_100', 'Update Number', r'Running mean (100 step window)', 'Acceptance Rate'))
        tasks.append(plot_generic(dirname, 'AcceptP-running_mean_10', 'Update Number', r'Running mean (10 step window)', 'Acceptance Rate'))

        path_out = names.tsv_extract(dirname, 'AcceptP-running_mean_100')

    for task in tasks:
        for subtask in task:
            yield subtask
Exemplo n.º 5
0
def plot_generic(dirname, name, *args, **kwargs):
    path_in = names.tsv_extract(dirname, name)
    path_out = names.plot(dirname, name)

    yield {
        'actions':
        [(visualizers.plot_generic, [path_in, path_out] + list(args), kwargs)],
        'name':
        path_out,
        'file_dep': [path_in],
        'targets': [path_out],
    }

    path_out = names.plot(dirname, name + '_autoy')
    kwargs = dict(kwargs)
    kwargs['use_auto_ylim'] = True

    yield {
        'actions':
        [(visualizers.plot_generic, [path_in, path_out] + list(args), kwargs)],
        'name':
        path_out,
        'file_dep': [path_in],
        'targets': [path_out],
    }