Exemplo n.º 1
0
def main(config, model_path: str, output_path: str, input_shape=(320, 320)):
    logger = Logger(local_rank=-1,
                    save_dir=config.save_dir,
                    use_tensorboard=False)

    # Create model and load weights
    model = build_model(config.model)
    checkpoint = torch.load(model_path,
                            map_location=lambda storage, loc: storage)
    load_model_weight(model, checkpoint, logger)

    # Convert backbone weights for RepVGG models
    if config.model.arch.backbone.name == "RepVGG":
        deploy_config = config.model
        deploy_config.arch.backbone.update({"deploy": True})
        deploy_model = build_model(deploy_config)
        from nanodet.model.backbone.repvgg import repvgg_det_model_convert

        model = repvgg_det_model_convert(model, deploy_model)

    # TorchScript: tracing the model with dummy inputs
    with torch.no_grad():
        dummy_input = torch.zeros(1, 3, input_shape[0],
                                  input_shape[1])  # Batch size = 1
        model.eval().cpu()
        model_traced = torch.jit.trace(model,
                                       example_inputs=dummy_input).eval()
        model_traced.save(output_path)
        print("Finished export to TorchScript")
Exemplo n.º 2
0
def main(config, model_path, output_path, input_shape=(320, 320)):
    logger = Logger(-1, config.save_dir, False)
    model = build_model(config.model)
    checkpoint = torch.load(model_path,
                            map_location=lambda storage, loc: storage)
    load_model_weight(model, checkpoint, logger)
    if config.model.arch.backbone.name == 'RepVGG':
        deploy_config = config.model
        deploy_config.arch.backbone.update({'deploy': True})
        deploy_model = build_model(deploy_config)
        from nanodet.model.backbone.repvgg import repvgg_det_model_convert
        model = repvgg_det_model_convert(model, deploy_model)
    dummy_input = torch.autograd.Variable(
        torch.randn(1, 3, input_shape[0], input_shape[1]))
    dynamic_axes = {
        "input": {
            0: "batch_size"
        },
        "output1": {
            0: "batch_size"
        },
        "output2": {
            0: "batch_size"
        },
        "output3": {
            0: "batch_size"
        },
        "output4": {
            0: "batch_size"
        },
        "output5": {
            0: "batch_size"
        },
        "output6": {
            0: "batch_size"
        }
    }

    input_names = ['input']
    output_names = [
        'output1', 'output2', 'output3', 'output4', 'output5', 'output6'
    ]
    torch.onnx.export(model,
                      dummy_input,
                      output_path,
                      verbose=True,
                      keep_initializers_as_inputs=True,
                      opset_version=12,
                      input_names=input_names,
                      output_names=output_names)

    import onnx
    from onnxsim import simplify
    model = onnx.load(output_path)
    # convert model
    model_simp, check = simplify(model)
    onnx.save(model_simp, output_path)
    print('finished exporting onnx ')
Exemplo n.º 3
0
def main(config, model_path, output_path, input_shape=(320, 320)):
    logger = Logger(-1, config.save_dir, False)
    model = build_model(config.model)
    checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
    load_model_weight(model, checkpoint, logger)
    if config.model.arch.backbone.name == 'RepVGG':
        deploy_config = config.model
        deploy_config.arch.backbone.update({'deploy': True})
        deploy_model = build_model(deploy_config)
        from nanodet.model.backbone.repvgg import repvgg_det_model_convert
        model = repvgg_det_model_convert(model, deploy_model)
    dummy_input = torch.autograd.Variable(torch.randn(1, 3, input_shape[0], input_shape[1]))
    torch.onnx.export(model, dummy_input, output_path, verbose=True, keep_initializers_as_inputs=True, opset_version=11)
    print('finished exporting onnx ')
Exemplo n.º 4
0
 def __init__(self, cfg, model_path, logger, device='cuda:0'):
     self.cfg = cfg
     self.device = device
     model = build_model(cfg.model)
     ckpt = torch.load(model_path, map_location=lambda storage, loc: storage)
     load_model_weight(model, ckpt, logger)
     if cfg.model.arch.backbone.name == 'RepVGG':
         deploy_config = cfg.model
         deploy_config.arch.backbone.update({'deploy': True})
         deploy_model = build_model(deploy_config)
         from nanodet.model.backbone.repvgg import repvgg_det_model_convert
         model = repvgg_det_model_convert(model, deploy_model)
     self.model = model.to(device).eval()
     self.pipeline = Pipeline(cfg.data.val.pipeline, cfg.data.val.keep_ratio)
Exemplo n.º 5
0
def main(config, model_path, output_path, input_shape=(320, 320)):
    logger = Logger(-1, config.save_dir, False)
    model = build_model(config.model)
    checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
    load_model_weight(model, checkpoint, logger)
    if config.model.arch.backbone.name == "RepVGG":
        deploy_config = config.model
        deploy_config.arch.backbone.update({"deploy": True})
        deploy_model = build_model(deploy_config)
        from nanodet.model.backbone.repvgg import repvgg_det_model_convert

        model = repvgg_det_model_convert(model, deploy_model)
    dummy_input = torch.autograd.Variable(
        torch.randn(1, 3, input_shape[0], input_shape[1])
    )

    torch.onnx.export(
        model,
        dummy_input,
        output_path,
        verbose=True,
        keep_initializers_as_inputs=True,
        opset_version=11,
        input_names=["data"],
        output_names=["output"],
    )
    logger.log("finished exporting onnx ")

    logger.log("start simplifying onnx ")
    input_data = {"data": dummy_input.detach().cpu().numpy()}
    model_sim, flag = onnxsim.simplify(output_path, input_data=input_data)
    if flag:
        onnx.save(model_sim, output_path)
        logger.log("simplify onnx successfully")
    else:
        logger.log("simplify onnx failed")