def dtype(self) -> np.dtype: logging.info(f"Accessing '{self.location}' for 'dtype'") (z_data, z_info) = read(str(self.location)) fields = [] for quant in self.quantity_names: fields.append((quant, z_data[quant].dtype)) return np.dtype(fields)
def get_data(self, indexing=None, fields=None) -> np.ndarray: (z_data, z_info) = read(str(self.location)) # create a structured array dset = np.zeros(self.num_particles, dtype=self.dtype) # fill the array for quant in self.quantity_names: dset[quant] = z_data[quant] return dset
def get_data(self, indexing=None, fields=None) -> np.ndarray: logging.info(f"Reading data in '{self.location}'") (z_data, z_info) = read(str(self.location)) if fields is None: # create a structured array dset = np.empty(self.num_particles, dtype=self.dtype) # fill the array for quant in self.quantity_names: dset[quant] = z_data[quant] else: if indexing is None: dset = z_data[fields][:] else: dset = z_data[fields][indexing] return dset
def dtype(self): logging.info(f"Accessing '{self.location}' for 'dtype'") (z_data, z_info) = read(str(self.location)) return z_data.dtype
def get_data(self=None, indexing=None): # TODO: apply indexing here (z_data, z_info) = read(str(self.location)) return z_data.transpose()