Exemplo n.º 1
0
def example1():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 10000

    print('Creating engines')

    # We want 12 projections, 20 results at least
    rbpt = RandomBinaryProjectionTree('rbpt', 20, 20)

    # Create engine 1
    engine_rbpt = Engine(DIM, lshashes=[rbpt], distance=CosineDistance())

    # Create binary hash as child hash
    rbp = RandomBinaryProjections('rbp1', 20)

    # Create engine 2
    engine = Engine(DIM, lshashes=[rbp], distance=CosineDistance())

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 20)
    rbp_conf = {'num_permutation': 50, 'beam_size': 10, 'num_neighbour': 100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine 3
    engine_perm = Engine(DIM,
                         lshashes=[permutations],
                         distance=CosineDistance())

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 12)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine 3
    engine_perm2 = Engine(DIM,
                          lshashes=[permutations2],
                          distance=CosineDistance())

    print('Indexing %d random vectors of dimension %d' % (POINTS, DIM))

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in xrange(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine.store_vector(v)
        engine_rbpt.store_vector(v)
        engine_perm.store_vector(v)
        engine_perm2.store_vector(v)

    print('Buckets 1 = %d' % len(engine.storage.buckets['rbp1'].keys()))
    print('Buckets 2 = %d' % len(engine_rbpt.storage.buckets['rbpt'].keys()))

    print('Building permuted index for HashPermutations')

    # Then update permuted index
    permutations.build_permuted_index()

    print('Generate random data')

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 1
    print('\nNeighbour distances with RandomBinaryProjectionTree:')
    print('  -> Candidate count is %d' % engine_rbpt.candidate_count(query))
    results = engine_rbpt.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Do random query on engine 2
    print('\nNeighbour distances with RandomBinaryProjections:')
    print('  -> Candidate count is %d' % engine.candidate_count(query))
    results = engine.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Do random query on engine 3
    print('\nNeighbour distances with HashPermutations:')
    print('  -> Candidate count is %d' % engine_perm.candidate_count(query))
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Do random query on engine 4
    print('\nNeighbour distances with HashPermutations2:')
    print('  -> Candidate count is %d' % engine_perm2.candidate_count(query))
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Real neighbours
    print('\nReal neighbour distances:')
    query = query.reshape((1, DIM))
    dists = CosineDistance().distance(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print(dists[:10])
Exemplo n.º 2
0
def example2():

    # Dimension of feature space
    DIM = 100

    # Number of data points (dont do too much because of exact search)
    POINTS = 20000

    ##########################################################

    print('Performing indexing with HashPermutations...')
    t0 = time.time()

    # Create permutations meta-hash
    permutations = HashPermutations('permut')

    # Create binary hash as child hash
    rbp_perm = RandomBinaryProjections('rbp_perm', 14)
    rbp_conf = {'num_permutation': 50, 'beam_size': 10, 'num_neighbour': 100}

    # Add rbp as child hash of permutations hash
    permutations.add_child_hash(rbp_perm, rbp_conf)

    # Create engine
    engine_perm = Engine(DIM,
                         lshashes=[permutations],
                         distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in range(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm.store_vector(v)

    # Then update permuted index
    permutations.build_permuted_index()

    t1 = time.time()
    print('Indexing took %f seconds' % (t1 - t0))

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 3
    print('\nNeighbour distances with HashPermutations:')
    print('  -> Candidate count is %d' % engine_perm.candidate_count(query))
    results = engine_perm.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Real neighbours
    print('\nReal neighbour distances:')
    query = query.reshape((DIM))
    dists = CosineDistance().distance(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print(dists[:10])

    ##########################################################

    print('\nPerforming indexing with HashPermutationMapper...')
    t0 = time.time()

    # Create permutations meta-hash
    permutations2 = HashPermutationMapper('permut2')

    # Create binary hash as child hash
    rbp_perm2 = RandomBinaryProjections('rbp_perm2', 14)

    # Add rbp as child hash of permutations hash
    permutations2.add_child_hash(rbp_perm2)

    # Create engine
    engine_perm2 = Engine(DIM,
                          lshashes=[permutations2],
                          distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in range(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_perm2.store_vector(v)

    t1 = time.time()
    print('Indexing took %f seconds' % (t1 - t0))

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print('\nNeighbour distances with HashPermutationMapper:')
    print('  -> Candidate count is %d' % engine_perm2.candidate_count(query))
    results = engine_perm2.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Real neighbours
    print('\nReal neighbour distances:')
    query = query.reshape((DIM))
    dists = CosineDistance().distance(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print(dists[:10])

    ##########################################################

    print('\nPerforming indexing with multiple binary hashes...')
    t0 = time.time()

    hashes = []
    for k in range(20):
        hashes.append(RandomBinaryProjections('rbp_%d' % k, 10))

    # Create engine
    engine_rbps = Engine(DIM, lshashes=hashes, distance=CosineDistance())

    # First index some random vectors
    matrix = numpy.zeros((POINTS, DIM))
    for i in range(POINTS):
        v = numpy.random.randn(DIM)
        matrix[i] = v
        engine_rbps.store_vector(v)

    t1 = time.time()
    print('Indexing took %f seconds' % (t1 - t0))

    # Get random query vector
    query = numpy.random.randn(DIM)

    # Do random query on engine 4
    print('\nNeighbour distances with multiple binary hashes:')
    print('  -> Candidate count is %d' % engine_rbps.candidate_count(query))
    results = engine_rbps.neighbours(query)
    dists = [x[2] for x in results]
    print(dists)

    # Real neighbours
    print('\nReal neighbour distances:')
    query = query.reshape((DIM))
    dists = CosineDistance().distance(matrix, query)
    dists = dists.reshape((-1, ))
    dists = sorted(dists)
    print(dists[:10])