Exemplo n.º 1
0
 def _unorm(self, u: UtilityFunction, mn, mx):
     if not isinstance(u, LinearUtilityAggregationFunction) and not isinstance(
         u, LinearUtilityFunction
     ):
         return normalize(u, outcomes=Issue.enumerate(issues, max_n_outcomes=1000))
     # _, mx = self._urange(u, issues)
     if mx < 0:
         return None
     u.weights = {k: _ / mx for k, _ in u.weights.items()}
     return u
Exemplo n.º 2
0
 def random(
     cls,
     issues: List["Issue"],
     reserved_value=(0.0, 1.0),
     normalized=True,
     max_n_outcomes: int = 10000,
 ):
     outcomes = (Issue.enumerate(issues)
                 if Issue.num_outcomes(issues) <= max_n_outcomes else
                 Issue.sample(issues,
                              max_n_outcomes,
                              with_replacement=False,
                              fail_if_not_enough=False))
     return UtilityFunction.generate_random(1, outcomes)[0]
Exemplo n.º 3
0
def test_reading_writing_linear_ufun(tmp_path):
    from negmas.utilities import LinearUtilityAggregationFunction, UtilityFunction
    from negmas.outcomes import Issue

    base_folder = pkg_resources.resource_filename(
        "negmas", resource_name="tests/data/Laptop")
    _, agent_info, issues = load_genius_domain_from_folder(
        base_folder,
        keep_issue_names=True,
        keep_value_names=True,
    )
    ufuns = [_["ufun"] for _ in agent_info]
    for ufun in ufuns:
        assert isinstance(ufun, LinearUtilityAggregationFunction)
        dst = tmp_path / "tmp.xml"
        print(dst)
        UtilityFunction.to_genius(ufun, issues=issues, file_name=dst)
        ufun2, _ = UtilityFunction.from_genius(dst)
        assert isinstance(ufun2, LinearUtilityAggregationFunction)
        for outcome in Issue.enumerate(issues):
            assert abs(ufun2(outcome) - ufun(outcome)) < 1e-3