Exemplo n.º 1
0
 def setup_test_data(self, test_data_config: Optional[DictConfig]):
     self._test_dl = self._setup_eval_dataloader_from_config(cfg=test_data_config)
     # instantiate Torchmetric for each test dataloader
     if self._test_dl is not None:
         for dataloader_idx in range(len(self._test_dl)):
             if dataloader_idx == 0:
                 setattr(
                     self, f'test_loss', GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True),
                 )
             else:
                 setattr(
                     self,
                     f'test_loss_{dataloader_idx}',
                     GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True),
                 )
Exemplo n.º 2
0
    def __init__(self, cfg: DictConfig, trainer: Trainer = None):

        # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable
        self.world_size = 1
        if trainer is not None:
            self.world_size = trainer.num_nodes * trainer.num_gpus

        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        # Instantiates tokenizer and register to be saved with NeMo Model archive
        # After this call, ther will be self.tokenizer which can convert between tokens and token_ids.
        self.setup_tokenizer(
            tokenizer_name=cfg.tokenizer.get("tokenizer_name", "yttm"),
            tokenizer_model=cfg.tokenizer.get("tokenizer_model", None),
            vocab_file=cfg.tokenizer.get("vocab_file", None),
            bpe_dropout=cfg.tokenizer.get("bpe_dropout", 0.0),
            special_tokens=cfg.tokenizer.get("special_tokens", {}))

        # init superclass
        super().__init__(cfg=cfg, trainer=trainer)

        # make vocabulary size divisible by 8 for fast fp16 training
        vocab_size = 8 * math.ceil(self.tokenizer.vocab_size / 8)

        # encoder from NeMo, Megatron-LM, or HuggingFace
        encoder_cfg_dict = OmegaConf.to_container(cfg.get('encoder'))
        encoder_cfg_dict['vocab_size'] = vocab_size
        library = encoder_cfg_dict.pop('library', 'nemo')
        model_name = encoder_cfg_dict.pop('model_name', None)
        pretrained = encoder_cfg_dict.pop('pretrained', False)
        self.encoder = get_transformer(
            library=library,
            model_name=model_name,
            pretrained=pretrained,
            config_dict=encoder_cfg_dict,
            encoder=True,
            pre_ln_final_layer_norm=encoder_cfg_dict.get(
                'pre_ln_final_layer_norm',
                encoder_cfg_dict.get('pre_ln', True)),
        )

        self.log_softmax = TokenClassifier(
            hidden_size=self.encoder.hidden_size,
            num_classes=vocab_size,
            activation=cfg.head.activation,
            log_softmax=cfg.head.log_softmax,
            dropout=cfg.head.dropout,
            use_transformer_init=cfg.head.use_transformer_init,
        )

        # tie weights of embedding and softmax matrices
        self.log_softmax.mlp.layer0.weight = self.encoder.embedding.token_embedding.weight

        std_init_range = 1 / self.encoder.hidden_size**0.5

        # initialize weights if not using pretrained encoder
        if not self._cfg.encoder.get('pretrained', False):
            self.encoder.apply(lambda module: transformer_weights_init(
                module, std_init_range))

        self.log_softmax.apply(
            lambda module: transformer_weights_init(module, std_init_range))

        self.loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.tokenizer.pad_id, label_smoothing=cfg.label_smoothing)
        self.eval_loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.tokenizer.pad_id)
        self.eval_loss = GlobalAverageLossMetric(dist_sync_on_step=False,
                                                 take_avg_loss=True)
        self.eval_ppl = SequencePerplexity()
Exemplo n.º 3
0
    def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None):
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable
        # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0

        self.world_size = 1
        if trainer is not None:
            self.world_size = trainer.num_nodes * trainer.num_gpus

        cfg = model_utils.maybe_update_config_version(cfg)

        self.src_language: str = cfg.get("src_language", None)
        self.tgt_language: str = cfg.get("tgt_language", None)

        # Instantiates tokenizers and register to be saved with NeMo Model archive
        # After this call, ther will be self.encoder_tokenizer and self.decoder_tokenizer
        # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly.
        self.setup_enc_dec_tokenizers(
            encoder_tokenizer_name=cfg.encoder_tokenizer.tokenizer_name,
            encoder_tokenizer_model=cfg.encoder_tokenizer.tokenizer_model,
            encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0),
            decoder_tokenizer_name=cfg.decoder_tokenizer.tokenizer_name,
            decoder_tokenizer_model=cfg.decoder_tokenizer.tokenizer_model,
            decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0),
        )

        # After this call, the model will have  self.source_processor and self.target_processor objects
        self.setup_pre_and_post_processing_utils(source_lang=self.src_language,
                                                 target_lang=self.tgt_language)

        # TODO: Why is this base constructor call so late in the game?
        super().__init__(cfg=cfg, trainer=trainer)

        # TODO: use get_encoder function with support for HF and Megatron
        self.encoder = TransformerEncoderNM(
            vocab_size=self.encoder_vocab_size,
            hidden_size=cfg.encoder.hidden_size,
            num_layers=cfg.encoder.num_layers,
            inner_size=cfg.encoder.inner_size,
            max_sequence_length=cfg.encoder.max_sequence_length if hasattr(
                cfg.encoder, 'max_sequence_length') else 512,
            embedding_dropout=cfg.encoder.embedding_dropout if hasattr(
                cfg.encoder, 'embedding_dropout') else 0.0,
            learn_positional_encodings=cfg.encoder.learn_positional_encodings
            if hasattr(cfg.encoder, 'learn_positional_encodings') else False,
            num_attention_heads=cfg.encoder.num_attention_heads,
            ffn_dropout=cfg.encoder.ffn_dropout,
            attn_score_dropout=cfg.encoder.attn_score_dropout,
            attn_layer_dropout=cfg.encoder.attn_layer_dropout,
            hidden_act=cfg.encoder.hidden_act,
            mask_future=cfg.encoder.mask_future,
            pre_ln=cfg.encoder.pre_ln,
        )

        # TODO: user get_decoder function with support for HF and Megatron
        self.decoder = TransformerDecoderNM(
            vocab_size=self.decoder_vocab_size,
            hidden_size=cfg.decoder.hidden_size,
            num_layers=cfg.decoder.num_layers,
            inner_size=cfg.decoder.inner_size,
            max_sequence_length=cfg.decoder.max_sequence_length if hasattr(
                cfg.decoder, 'max_sequence_length') else 512,
            embedding_dropout=cfg.decoder.embedding_dropout if hasattr(
                cfg.decoder, 'embedding_dropout') else 0.0,
            learn_positional_encodings=cfg.decoder.learn_positional_encodings
            if hasattr(cfg.decoder, 'learn_positional_encodings') else False,
            num_attention_heads=cfg.decoder.num_attention_heads,
            ffn_dropout=cfg.decoder.ffn_dropout,
            attn_score_dropout=cfg.decoder.attn_score_dropout,
            attn_layer_dropout=cfg.decoder.attn_layer_dropout,
            hidden_act=cfg.decoder.hidden_act,
            pre_ln=cfg.decoder.pre_ln,
        )

        self.log_softmax = TokenClassifier(
            hidden_size=self.decoder.hidden_size,
            num_classes=self.decoder_vocab_size,
            activation=cfg.head.activation,
            log_softmax=cfg.head.log_softmax,
            dropout=cfg.head.dropout,
            use_transformer_init=cfg.head.use_transformer_init,
        )

        self.beam_search = BeamSearchSequenceGenerator(
            embedding=self.decoder.embedding,
            decoder=self.decoder.decoder,
            log_softmax=self.log_softmax,
            max_sequence_length=self.decoder.max_sequence_length,
            beam_size=cfg.beam_size,
            bos=self.decoder_tokenizer.bos_id,
            pad=self.decoder_tokenizer.pad_id,
            eos=self.decoder_tokenizer.eos_id,
            len_pen=cfg.len_pen,
            max_delta_length=cfg.max_generation_delta,
        )

        # tie weights of embedding and softmax matrices
        self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight

        # TODO: encoder and decoder with different hidden size?
        std_init_range = 1 / self.encoder.hidden_size**0.5
        self.apply(
            lambda module: transformer_weights_init(module, std_init_range))

        self.loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.decoder_tokenizer.pad_id,
            label_smoothing=cfg.label_smoothing)
        self.eval_loss = GlobalAverageLossMetric(dist_sync_on_step=False,
                                                 take_avg_loss=True)
Exemplo n.º 4
0
def _loss_class_test(
    rank: int,
    worldsize: int,
    loss_sum_or_avg: Optional[torch.Tensor],
    num_measurements: Optional[torch.Tensor],
    dist_sync_on_step: bool,
    take_avg_loss: bool,
    check_dist_sync_on_step: bool = True,
    check_batch: bool = True,
    atol: float = 1e-8,
):
    """ Utility function doing the actual comparison between lightning class metric
        and reference metric.
        Args:
            rank: rank of current process
            worldsize: number of processes
            loss_sum_or_avg: a one dimensional float torch tensor with loss sums or means.
            num_measurements: a one dimensional integer torch tensor with number of values on which sums or means from
                ``loss_sum_or_avg`` were computed.
            dist_sync_on_step: bool, if true will synchronize metric state across processes at each call of the
                method :meth:`forward()`
            take_avg_loss: dict with additional arguments used for class initialization
            check_dist_sync_on_step: bool, if true will check if the metric is also correctly
                calculated per batch per device (and not just at the end)
            check_batch: bool, if true will check if the metric is also correctly
                calculated across devices for each batch (and not just at the end)
    """
    # Instantiate lightning metric
    loss_metric = GlobalAverageLossMetric(compute_on_step=True,
                                          dist_sync_on_step=dist_sync_on_step,
                                          take_avg_loss=take_avg_loss)

    # verify loss works after being loaded from pickled state
    pickled_metric = pickle.dumps(loss_metric)
    loss_metric = pickle.loads(pickled_metric)
    for i in range(rank, NUM_BATCHES, worldsize):
        batch_result = loss_metric(loss_sum_or_avg[i], num_measurements[i])
        if loss_metric.dist_sync_on_step:
            if rank == 0:
                ddp_loss_sum_or_avg = torch.stack(
                    [loss_sum_or_avg[i + r] for r in range(worldsize)])
                ddp_num_measurements = torch.stack(
                    [num_measurements[i + r] for r in range(worldsize)])
                sk_batch_result = reference_loss_func(ddp_loss_sum_or_avg,
                                                      ddp_num_measurements,
                                                      take_avg_loss)
                # assert for dist_sync_on_step
                if check_dist_sync_on_step:
                    if sk_batch_result.isnan():
                        assert batch_result.isnan()
                    else:
                        assert np.allclose(
                            batch_result.numpy(), sk_batch_result, atol=atol
                        ), f"batch_result = {batch_result.numpy()}, sk_batch_result = {sk_batch_result}, i = {i}"
        else:
            ls = loss_sum_or_avg[i:i + 1]
            nm = num_measurements[i:i + 1]
            sk_batch_result = reference_loss_func(ls, nm, take_avg_loss)
            # assert for batch
            if check_batch:
                if sk_batch_result.isnan():
                    assert batch_result.isnan()
                else:
                    assert np.allclose(
                        batch_result.numpy(), sk_batch_result, atol=atol
                    ), f"batch_result = {batch_result.numpy()}, sk_batch_result = {sk_batch_result}, i = {i}"
    # check on all batches on all ranks
    result = loss_metric.compute()
    assert isinstance(result, torch.Tensor)
    sk_result = reference_loss_func(loss_sum_or_avg, num_measurements,
                                    take_avg_loss)

    # assert after aggregation
    if sk_result.isnan():
        assert result.isnan()
    else:
        assert np.allclose(
            result.numpy(), sk_result,
            atol=atol), f"result = {result.numpy()}, sk_result = {sk_result}"
Exemplo n.º 5
0
    def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None):
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable
        self.global_rank = 0
        self.world_size = 1
        if trainer is not None:
            self.global_rank = (trainer.node_rank *
                                trainer.num_gpus) + trainer.local_rank
            self.world_size = trainer.num_nodes * trainer.num_gpus

        cfg = model_utils.maybe_update_config_version(cfg)
        self.setup_enc_dec_tokenizers(cfg)

        super().__init__(cfg=cfg, trainer=trainer)

        # TODO: use get_encoder function with support for HF and Megatron
        self.encoder = TransformerEncoderNM(
            vocab_size=self.encoder_vocab_size,
            hidden_size=cfg.encoder.hidden_size,
            num_layers=cfg.encoder.num_layers,
            inner_size=cfg.encoder.inner_size,
            max_sequence_length=cfg.encoder.max_sequence_length if hasattr(
                cfg.encoder, 'max_sequence_length') else 512,
            embedding_dropout=cfg.encoder.embedding_dropout if hasattr(
                cfg.encoder, 'embedding_dropout') else 0.0,
            learn_positional_encodings=cfg.encoder.learn_positional_encodings
            if hasattr(cfg.encoder, 'learn_positional_encodings') else False,
            num_attention_heads=cfg.encoder.num_attention_heads,
            ffn_dropout=cfg.encoder.ffn_dropout,
            attn_score_dropout=cfg.encoder.attn_score_dropout,
            attn_layer_dropout=cfg.encoder.attn_layer_dropout,
            hidden_act=cfg.encoder.hidden_act,
            mask_future=cfg.encoder.mask_future,
            pre_ln=cfg.encoder.pre_ln,
        )

        # TODO: user get_decoder function with support for HF and Megatron
        self.decoder = TransformerDecoderNM(
            vocab_size=self.decoder_vocab_size,
            hidden_size=cfg.decoder.hidden_size,
            num_layers=cfg.decoder.num_layers,
            inner_size=cfg.decoder.inner_size,
            max_sequence_length=cfg.decoder.max_sequence_length if hasattr(
                cfg.decoder, 'max_sequence_length') else 512,
            embedding_dropout=cfg.decoder.embedding_dropout if hasattr(
                cfg.decoder, 'embedding_dropout') else 0.0,
            learn_positional_encodings=cfg.decoder.learn_positional_encodings
            if hasattr(cfg.decoder, 'learn_positional_encodings') else False,
            num_attention_heads=cfg.decoder.num_attention_heads,
            ffn_dropout=cfg.decoder.ffn_dropout,
            attn_score_dropout=cfg.decoder.attn_score_dropout,
            attn_layer_dropout=cfg.decoder.attn_layer_dropout,
            hidden_act=cfg.decoder.hidden_act,
            pre_ln=cfg.decoder.pre_ln,
        )

        self.log_softmax = TokenClassifier(
            hidden_size=self.decoder.hidden_size,
            num_classes=self.decoder_vocab_size,
            activation=cfg.head.activation,
            log_softmax=cfg.head.log_softmax,
            dropout=cfg.head.dropout,
            use_transformer_init=cfg.head.use_transformer_init,
        )

        self.beam_search = BeamSearchSequenceGenerator(
            embedding=self.decoder.embedding,
            decoder=self.decoder.decoder,
            log_softmax=self.log_softmax,
            max_sequence_length=self.decoder.max_sequence_length,
            beam_size=cfg.beam_size,
            bos=self.decoder_tokenizer.bos_id,
            pad=self.decoder_tokenizer.pad_id,
            eos=self.decoder_tokenizer.eos_id,
            len_pen=cfg.len_pen,
            max_delta_length=cfg.max_generation_delta,
        )

        # tie weights of embedding and softmax matrices
        self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight

        # TODO: encoder and decoder with different hidden size?
        std_init_range = 1 / self.encoder.hidden_size**0.5
        self.apply(
            lambda module: transformer_weights_init(module, std_init_range))

        self.loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.decoder_tokenizer.pad_id,
            label_smoothing=cfg.label_smoothing)
        self.eval_loss = GlobalAverageLossMetric(dist_sync_on_step=False,
                                                 take_avg_loss=True)
Exemplo n.º 6
0
    def __init__(self, cfg: MTEncDecModelConfig, trainer: Trainer = None):
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        # Get global rank and total number of GPU workers for IterableDataset partitioning, if applicable
        # Global_rank and local_rank is set by LightningModule in Lightning 1.2.0

        self.world_size = 1
        if trainer is not None:
            self.world_size = trainer.num_nodes * trainer.num_gpus

        cfg = model_utils.maybe_update_config_version(cfg)

        self.src_language: str = cfg.get("src_language", None)
        self.tgt_language: str = cfg.get("tgt_language", None)

        # Instantiates tokenizers and register to be saved with NeMo Model archive
        # After this call, ther will be self.encoder_tokenizer and self.decoder_tokenizer
        # Which can convert between tokens and token_ids for SRC and TGT languages correspondingly.
        self.setup_enc_dec_tokenizers(
            encoder_tokenizer_library=cfg.encoder_tokenizer.get('library', 'yttm'),
            encoder_tokenizer_model=cfg.encoder_tokenizer.get('tokenizer_model'),
            encoder_bpe_dropout=cfg.encoder_tokenizer.get('bpe_dropout', 0.0),
            encoder_model_name=cfg.encoder.get('model_name') if hasattr(cfg.encoder, 'model_name') else None,
            decoder_tokenizer_library=cfg.decoder_tokenizer.get('library', 'yttm'),
            decoder_tokenizer_model=cfg.decoder_tokenizer.tokenizer_model,
            decoder_bpe_dropout=cfg.decoder_tokenizer.get('bpe_dropout', 0.0),
            decoder_model_name=cfg.decoder.get('model_name') if hasattr(cfg.decoder, 'model_name') else None,
        )

        # After this call, the model will have  self.source_processor and self.target_processor objects
        self.setup_pre_and_post_processing_utils(source_lang=self.src_language, target_lang=self.tgt_language)

        # TODO: Why is this base constructor call so late in the game?
        super().__init__(cfg=cfg, trainer=trainer)

        # encoder from NeMo, Megatron-LM, or HuggingFace
        encoder_cfg_dict = OmegaConf.to_container(cfg.get('encoder'))
        encoder_cfg_dict['vocab_size'] = self.encoder_vocab_size
        library = encoder_cfg_dict.pop('library', 'nemo')
        model_name = encoder_cfg_dict.pop('model_name', None)
        pretrained = encoder_cfg_dict.pop('pretrained', False)
        self.encoder = get_transformer(
            library=library, model_name=model_name, pretrained=pretrained, config_dict=encoder_cfg_dict, encoder=True,
        )

        # decoder from NeMo, Megatron-LM, or HuggingFace
        decoder_cfg_dict = OmegaConf.to_container(cfg.get('decoder'))
        decoder_cfg_dict['vocab_size'] = self.decoder_vocab_size
        library = decoder_cfg_dict.pop('library', 'nemo')
        model_name = decoder_cfg_dict.pop('model_name', None)
        pretrained = decoder_cfg_dict.pop('pretrained', False)
        decoder_cfg_dict['hidden_size'] = self.encoder.hidden_size
        self.decoder = get_transformer(
            library=library, model_name=model_name, pretrained=pretrained, config_dict=decoder_cfg_dict, encoder=False,
        )

        self.log_softmax = TokenClassifier(
            hidden_size=self.decoder.hidden_size,
            num_classes=self.decoder_vocab_size,
            activation=cfg.head.activation,
            log_softmax=cfg.head.log_softmax,
            dropout=cfg.head.dropout,
            use_transformer_init=cfg.head.use_transformer_init,
        )

        self.beam_search = BeamSearchSequenceGenerator(
            embedding=self.decoder.embedding,
            decoder=self.decoder.decoder,
            log_softmax=self.log_softmax,
            max_sequence_length=self.decoder.max_sequence_length,
            beam_size=cfg.beam_size,
            bos=self.decoder_tokenizer.bos_id,
            pad=self.decoder_tokenizer.pad_id,
            eos=self.decoder_tokenizer.eos_id,
            len_pen=cfg.len_pen,
            max_delta_length=cfg.max_generation_delta,
        )

        # tie weights of embedding and softmax matrices
        self.log_softmax.mlp.layer0.weight = self.decoder.embedding.token_embedding.weight

        # TODO: encoder and decoder with different hidden size?
        std_init_range = 1 / self.encoder.hidden_size ** 0.5

        # initialize weights if not using pretrained encoder/decoder
        if not self._cfg.encoder.get('pretrained', False):
            self.encoder.apply(lambda module: transformer_weights_init(module, std_init_range))

        if not self._cfg.decoder.get('pretrained', False):
            self.decoder.apply(lambda module: transformer_weights_init(module, std_init_range))

        self.log_softmax.apply(lambda module: transformer_weights_init(module, std_init_range))

        self.loss_fn = SmoothedCrossEntropyLoss(
            pad_id=self.decoder_tokenizer.pad_id, label_smoothing=cfg.label_smoothing
        )
        self.eval_loss = GlobalAverageLossMetric(dist_sync_on_step=False, take_avg_loss=True)