Exemplo n.º 1
0
 def test_add_special_tokens(self, test_data_dir):
     tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name,
                                        legacy=True)
     special_tokens = MODEL_SPECIAL_TOKENS
     tokenizer.add_special_tokens(special_tokens)
     assert tokenizer.vocab_size == tokenizer.original_vocab_size + len(
         set(special_tokens.values()))
Exemplo n.º 2
0
    def test_tokens_to_text(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)

        text = "[CLS] a b c [MASK] e f [SEP] g h i [SEP]"
        tokens = tokenizer.text_to_tokens(text)
        result = tokenizer.tokens_to_text(tokens)

        assert text == result
Exemplo n.º 3
0
    def test_ids_to_text(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)

        text = "<cls> a b c <sep> e f g h i </s>"
        ids = tokenizer.text_to_ids(text)
        result = tokenizer.ids_to_text(ids)

        assert text == result
Exemplo n.º 4
0
    def test_tokens_to_text(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)

        # <cls> is user_defined_symbol in the test tokenizer model
        text = "<cls> a b c e f g h i"
        tokens = tokenizer.text_to_tokens(text)
        result = tokenizer.tokens_to_text(tokens)

        assert text == result
Exemplo n.º 5
0
    def test_text_to_ids(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)

        # <cls> is user_defined_symbol in the test tokenizer model
        # <unk>, <sep>, <s>, and </s> are control symbols
        text = "<cls> a b c <sep> e f g h i </s>"
        tokens = tokenizer.text_to_ids(text)

        assert tokens.count(tokenizer.token_to_id("<cls>")) == 1
        assert tokens.count(tokenizer.token_to_id("<sep>")) == 0
        assert tokens.count(tokenizer.token_to_id("</s>")) == 0
Exemplo n.º 6
0
    def test_text_to_tokens(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)
        special_tokens = MODEL_SPECIAL_TOKENS
        tokenizer.add_special_tokens(special_tokens)

        text = "[CLS] a b c [MASK] e f [SEP] g h i [SEP]"
        tokens = tokenizer.text_to_tokens(text)

        assert len(tokens) == len(text.split())
        assert tokens.count("[CLS]") == 1
        assert tokens.count("[MASK]") == 1
        assert tokens.count("[SEP]") == 2
Exemplo n.º 7
0
    def test_ids_to_tokens(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)

        tokens = [
            "<cls>", "a", "b", "c", "<sep>", "e", "f", "<sep>", "g", "h", "i",
            "</s>"
        ]
        ids = tokenizer.tokens_to_ids(tokens)
        result = tokenizer.ids_to_tokens(ids)

        assert len(result) == len(tokens)

        for i in range(len(result)):
            assert result[i] == tokens[i]
Exemplo n.º 8
0
    def test_tokens_to_ids(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name,
                                           legacy=True)
        special_tokens = MODEL_SPECIAL_TOKENS
        tokenizer.add_special_tokens(special_tokens)

        text = "[CLS] a b c [MASK] e f [SEP] g h i [SEP]"
        tokens = tokenizer.text_to_tokens(text)
        ids = tokenizer.tokens_to_ids(tokens)

        assert len(ids) == len(tokens)
        assert ids.count(tokenizer.token_to_id("[CLS]")) == 1
        assert ids.count(tokenizer.token_to_id("[MASK]")) == 1
        assert ids.count(tokenizer.token_to_id("[SEP]")) == 2
Exemplo n.º 9
0
    def test_ids_to_text(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)
        special_tokens = MODEL_SPECIAL_TOKENS
        tokenizer.add_special_tokens(special_tokens)

        text = "[CLS] a b c [MASK] e f [SEP] g h i [SEP]"
        ids = tokenizer.text_to_ids(text)
        result = tokenizer.ids_to_text(ids)

        assert text == result
Exemplo n.º 10
0
    def test_ids_to_tokens(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)
        special_tokens = MODEL_SPECIAL_TOKENS
        tokenizer.add_special_tokens(special_tokens)

        text = "[CLS] a b c [MASK] e f [SEP] g h i [SEP]"
        tokens = tokenizer.text_to_tokens(text)
        ids = tokenizer.tokens_to_ids(tokens)
        result = tokenizer.ids_to_tokens(ids)

        assert len(result) == len(tokens)

        for i in range(len(result)):
            assert result[i] == tokens[i]
Exemplo n.º 11
0
    def get_monolingual_tokenizer(
        tokenizer_name=None, tokenizer_model=None, bpe_dropout=0.0,
    ):
        if tokenizer_name == 'yttm':
            if bpe_dropout is None:
                bpe_dropout = 0.0
            tokenizer = get_tokenizer(
                tokenizer_name=tokenizer_name, tokenizer_model=tokenizer_model, bpe_dropout=bpe_dropout,
            )
        elif tokenizer_name == 'sentencepiece':
            tokenizer = SentencePieceTokenizer(model_path=tokenizer_model)
        else:
            try:
                tokenizer = get_tokenizer(tokenizer_name, special_tokens={"pad_token": "[PAD]"})
            except Exception as e:
                raise ValueError(f'{tokenizer_name} is not supported by either NeMo or HuggingFace. {e}')

        return tokenizer
Exemplo n.º 12
0
    def test_tokens_to_ids(self, test_data_dir):
        tokenizer = SentencePieceTokenizer(test_data_dir + self.model_name)

        tokens = [
            "<cls>", "a", "b", "c", "<sep>", "e", "f", "<sep>", "g", "h", "i",
            "</s>"
        ]
        ids = tokenizer.tokens_to_ids(tokens)

        assert len(ids) == len(tokens)
        assert ids.count(tokenizer.token_to_id("<cls>")) == 1
        assert ids.count(tokenizer.token_to_id("</s>")) == 1
        assert ids.count(tokenizer.token_to_id("<sep>")) == 2
Exemplo n.º 13
0
class EnJaTokenizer:
    """
    Tokenizer for Japanese & English that does Moses tokenization followed by SentencePiece
    Args:
        sp_tokenizer_model_path: String path to a sentencepiece model
        lang_id: One of ['en', 'ja'].
    """

    def __init__(self, sp_tokenizer_model_path: str, lang_id: str):
        self.moses_tokenizer = MosesTokenizer(lang=lang_id)
        self.sp_tokenizer = SentencePieceTokenizer(model_path=sp_tokenizer_model_path)

    def sp_tokenize(self, text: str) -> str:
        return ' '.join(self.sp_tokenizer.text_to_tokens(text))

    def tokenize(self, text, escape=False, return_str=False):
        """
        Tokenizes text using Moses -> Sentencepiece.
        """
        text = self.moses_tokenizer.tokenize(text, escape=escape, return_str=True)
        text = self.sp_tokenize(text)
        return text if return_str else text.split()
Exemplo n.º 14
0
 def __init__(self, sp_tokenizer_model_path: str, lang_id: str):
     self.moses_tokenizer = MosesTokenizer(lang=lang_id)
     self.sp_tokenizer = SentencePieceTokenizer(model_path=sp_tokenizer_model_path)