Exemplo n.º 1
0
def test_alif_rate(Simulator):
    n = 100
    max_rates = 50 * np.ones(n)
    # max_rates = 200 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(n,
                           1,
                           max_rates=max_rates,
                           intercepts=intercepts,
                           encoders=encoders,
                           neuron_type=nengo.AdaptiveLIFRate())
        nengo.Connection(u, a, synapse=None)
        ap = nengo.Probe(a, "spikes", synapse=None)

    dt = 1e-3
    sim = Simulator(model, dt=dt)
    sim.run(2.)

    t = sim.trange()
    rates = sim.data[ap]
    _, ref = tuning_curves(a, sim, eval_points=0.5)

    with Plotter(Simulator) as plt:
        ax = plt.subplot(211)
        implot(plt, t, intercepts[::-1], rates.T / dt, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('input')
        ax = plt.subplot(212)
        ax.plot(intercepts, ref[:, ::-1].T, 'k--')
        ax.plot(intercepts, rates[[1, 500, 1000, -1], ::-1].T / dt)
        ax.set_xlabel('input')
        ax.set_xlabel('rate')
        plt.savefig('test_neurons.test_alif_rate.pdf')
        plt.close()

    # check that initial tuning curve is the same as LIF rates
    assert np.allclose(rates[1] / dt, ref, atol=0.1, rtol=1e-3)

    # check that curves in firing region are monotonically decreasing
    assert np.all(np.diff(rates[1:, intercepts < 0.4], axis=0) < 0)
Exemplo n.º 2
0
def test_alif_rate(Simulator):
    n = 100
    max_rates = 50 * np.ones(n)
    # max_rates = 200 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(n, 1,
                           max_rates=max_rates,
                           intercepts=intercepts,
                           encoders=encoders,
                           neuron_type=nengo.AdaptiveLIFRate())
        nengo.Connection(u, a, synapse=None)
        ap = nengo.Probe(a, "spikes", synapse=None)

    dt = 1e-3
    sim = Simulator(model, dt=dt)
    sim.run(2.)

    t = sim.trange()
    rates = sim.data[ap]
    _, ref = tuning_curves(a, sim, eval_points=0.5)

    with Plotter(Simulator) as plt:
        ax = plt.subplot(211)
        implot(plt, t, intercepts[::-1], rates.T / dt, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('input')
        ax = plt.subplot(212)
        ax.plot(intercepts, ref[:, ::-1].T, 'k--')
        ax.plot(intercepts, rates[[1, 500, 1000, -1], ::-1].T / dt)
        ax.set_xlabel('input')
        ax.set_xlabel('rate')
        plt.savefig('test_neurons.test_alif_rate.pdf')
        plt.close()

    # check that initial tuning curve is the same as LIF rates
    assert np.allclose(rates[1] / dt, ref, atol=0.1, rtol=1e-3)

    # check that curves in firing region are monotonically decreasing
    assert np.all(np.diff(rates[1:, intercepts < 0.4], axis=0) < 0)
Exemplo n.º 3
0
def test_alif_rate(Simulator, plt, allclose):
    n = 100
    max_rates = 50 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(
            n,
            1,
            max_rates=max_rates,
            intercepts=intercepts,
            encoders=encoders,
            neuron_type=AdaptiveLIFRate(),
        )
        nengo.Connection(u, a, synapse=None)
        ap = nengo.Probe(a.neurons)

    with Simulator(model) as sim:
        sim.run(2.0)

    t = sim.trange()
    rates = sim.data[ap]
    _, ref = tuning_curves(a, sim, inputs=0.5)

    ax = plt.subplot(211)
    implot(plt, t, intercepts[::-1], rates.T, ax=ax)
    ax.set_xlabel("time [s]")
    ax.set_ylabel("input")
    ax = plt.subplot(212)
    ax.plot(intercepts, ref[::-1].T, "k--")
    ax.plot(intercepts, rates[[1, 500, 1000, -1], ::-1].T)
    ax.set_xlabel("input")
    ax.set_xlabel("rate")

    # check that initial tuning curve is the same as LIF rates
    assert allclose(rates[1], ref, atol=0.1, rtol=1e-3)

    # check that curves in firing region are monotonically decreasing
    assert np.all(np.diff(rates[1:, intercepts < 0.4], axis=0) < 0)
Exemplo n.º 4
0
def test_alif(Simulator):
    """Test ALIF and ALIFRate by comparing them to each other"""

    n = 100
    max_rates = 50 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))
    nparams = dict(tau_n=1, inc_n=10e-3)
    eparams = dict(n_neurons=n,
                   max_rates=max_rates,
                   intercepts=intercepts,
                   encoders=encoders)

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(neuron_type=nengo.AdaptiveLIFRate(**nparams),
                           dimensions=1,
                           **eparams)
        b = nengo.Ensemble(neuron_type=nengo.AdaptiveLIF(**nparams),
                           dimensions=1,
                           **eparams)
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        ap = nengo.Probe(a, "spikes", synapse=0)
        bp = nengo.Probe(b, "spikes", synapse=0)

    dt = 1e-3
    sim = Simulator(model, dt=dt)
    sim.run(2.)

    t = sim.trange()
    a_rates = sim.data[ap] / dt
    spikes = sim.data[bp]
    b_rates = rates_kernel(t, spikes)

    tmask = (t > 0.1) & (t < 1.7)
    rel_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])

    with Plotter(Simulator) as plt:
        ax = plt.subplot(311)
        implot(plt, t, intercepts[::-1], a_rates.T, ax=ax)
        ax.set_ylabel('input')
        ax = plt.subplot(312)
        implot(plt, t, intercepts[::-1], b_rates.T, ax=ax)
        ax.set_ylabel('input')
        ax = plt.subplot(313)
        implot(plt, t, intercepts[::-1], (b_rates - a_rates)[tmask].T, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('input')
        plt.savefig('test_neurons.test_alif.pdf')
        plt.close()

    assert rel_rmse < 0.07
Exemplo n.º 5
0
def _test_rates(Simulator, rates, name=None):
    if name is None:
        name = rates.__name__

    n = 100
    max_rates = 50 * np.ones(n)
    # max_rates = 200 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))

    model = nengo.Network()
    with model:
        model.config[nengo.Ensemble].max_rates = max_rates
        model.config[nengo.Ensemble].intercepts = intercepts
        model.config[nengo.Ensemble].encoders = encoders
        u = nengo.Node(output=whitenoise(1, 5, seed=8393))
        a = nengo.Ensemble(n, 1, neuron_type=nengo.LIFRate())
        b = nengo.Ensemble(n, 1, neuron_type=nengo.LIF())
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        up = nengo.Probe(u)
        ap = nengo.Probe(a.neurons)
        bp = nengo.Probe(b.neurons)

    dt = 1e-3
    sim = Simulator(model, dt=dt)
    sim.run(2.)

    t = sim.trange()
    x = sim.data[up]
    a_rates = sim.data[ap] / dt
    spikes = sim.data[bp]
    b_rates = rates(t, spikes)

    with Plotter(Simulator) as plt:
        ax = plt.subplot(411)
        plt.plot(t, x)
        ax = plt.subplot(412)
        implot(plt, t, intercepts, a_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(413)
        implot(plt, t, intercepts, b_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(414)
        implot(plt, t, intercepts, (b_rates - a_rates).T, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('intercept')
        plt.savefig('utils.test_neurons.test_rates.%s.pdf' % name)
        plt.close()

    tmask = (t > 0.1) & (t < 1.9)
    relative_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])
    return relative_rmse
Exemplo n.º 6
0
def _test_rates(Simulator, rates, name=None):
    if name is None:
        name = rates.__name__

    n = 100
    max_rates = 50 * np.ones(n)
    # max_rates = 200 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))
    nparams = dict(n_neurons=n)
    eparams = dict(
        max_rates=max_rates, intercepts=intercepts, encoders=encoders)

    model = nengo.Network()
    with model:
        u = nengo.Node(output=whitenoise(1, 5, seed=8393))
        a = nengo.Ensemble(nengo.LIFRate(**nparams), 1, **eparams)
        b = nengo.Ensemble(nengo.LIF(**nparams), 1, **eparams)
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        up = nengo.Probe(u)
        ap = nengo.Probe(a.neurons, "output", synapse=None)
        bp = nengo.Probe(b.neurons, "output", synapse=None)

    dt = 1e-3
    sim = Simulator(model, dt=dt)
    sim.run(2.)

    t = sim.trange()
    x = sim.data[up]
    a_rates = sim.data[ap] / dt
    spikes = sim.data[bp]
    b_rates = rates(t, spikes)

    with Plotter(Simulator) as plt:
        ax = plt.subplot(411)
        plt.plot(t, x)
        ax = plt.subplot(412)
        implot(plt, t, intercepts, a_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(413)
        implot(plt, t, intercepts, b_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(414)
        implot(plt, t, intercepts, (b_rates - a_rates).T, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('intercept')
        plt.savefig('utils.test_neurons.test_rates.%s.pdf' % name)
        plt.close()

    tmask = (t > 0.1) & (t < 1.9)
    relative_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])
    return relative_rmse
Exemplo n.º 7
0
def test_alif(Simulator):
    """Test ALIF and ALIFRate by comparing them to each other"""

    n = 100
    max_rates = 50 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))
    nparams = dict(tau_n=1, inc_n=10e-3)
    eparams = dict(n_neurons=n, max_rates=max_rates,
                   intercepts=intercepts, encoders=encoders)

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(neuron_type=nengo.AdaptiveLIFRate(**nparams),
                           dimensions=1,
                           **eparams)
        b = nengo.Ensemble(neuron_type=nengo.AdaptiveLIF(**nparams),
                           dimensions=1,
                           **eparams)
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        ap = nengo.Probe(a, "spikes", synapse=0)
        bp = nengo.Probe(b, "spikes", synapse=0)

    dt = 1e-3
    sim = Simulator(model, dt=dt)
    sim.run(2.)

    t = sim.trange()
    a_rates = sim.data[ap] / dt
    spikes = sim.data[bp]
    b_rates = rates_kernel(t, spikes)

    tmask = (t > 0.1) & (t < 1.7)
    rel_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])

    with Plotter(Simulator) as plt:
        ax = plt.subplot(311)
        implot(plt, t, intercepts[::-1], a_rates.T, ax=ax)
        ax.set_ylabel('input')
        ax = plt.subplot(312)
        implot(plt, t, intercepts[::-1], b_rates.T, ax=ax)
        ax.set_ylabel('input')
        ax = plt.subplot(313)
        implot(plt, t, intercepts[::-1], (b_rates - a_rates)[tmask].T, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('input')
        plt.savefig('test_neurons.test_alif.pdf')
        plt.close()

    assert rel_rmse < 0.07
Exemplo n.º 8
0
def test_alif(Simulator, plt):
    """Test ALIF and ALIFRate by comparing them to each other"""

    n = 100
    max_rates = 50 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))
    nparams = dict(tau_n=1, inc_n=10e-3)
    eparams = dict(n_neurons=n,
                   max_rates=max_rates,
                   intercepts=intercepts,
                   encoders=encoders)

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(neuron_type=AdaptiveLIFRate(**nparams),
                           dimensions=1,
                           **eparams)
        b = nengo.Ensemble(neuron_type=AdaptiveLIF(**nparams),
                           dimensions=1,
                           **eparams)
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        ap = nengo.Probe(a.neurons)
        bp = nengo.Probe(b.neurons)

    with Simulator(model) as sim:
        sim.run(2.0)

    t = sim.trange()
    a_rates = sim.data[ap]
    spikes = sim.data[bp]
    b_rates = nengo.Lowpass(0.04).filtfilt(spikes)

    tmask = (t > 0.1) & (t < 1.7)
    rel_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])

    ax = plt.subplot(311)
    implot(plt, t, intercepts[::-1], a_rates.T, ax=ax)
    ax.set_ylabel("input")
    ax = plt.subplot(312)
    implot(plt, t, intercepts[::-1], b_rates.T, ax=ax)
    ax.set_ylabel("input")
    ax = plt.subplot(313)
    implot(plt, t, intercepts[::-1], (b_rates - a_rates)[tmask].T, ax=ax)
    ax.set_xlabel("time [s]")
    ax.set_ylabel("input")

    assert rel_rmse < 0.07
Exemplo n.º 9
0
def _test_rates(Simulator, rates, plt, seed):
    n = 100
    intercepts = np.linspace(-0.99, 0.99, n)

    model = nengo.Network(seed=seed)
    with model:
        model.config[nengo.Ensemble].max_rates = nengo.dists.Choice([50])
        model.config[nengo.Ensemble].encoders = nengo.dists.Choice([[1]])
        u = nengo.Node(output=nengo.processes.WhiteSignal(2, high=5))
        a = nengo.Ensemble(n,
                           1,
                           intercepts=intercepts,
                           neuron_type=nengo.LIFRate())
        b = nengo.Ensemble(n,
                           1,
                           intercepts=intercepts,
                           neuron_type=nengo.LIF())
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        up = nengo.Probe(u)
        ap = nengo.Probe(a.neurons)
        bp = nengo.Probe(b.neurons)

    with Simulator(model, seed=seed + 1) as sim:
        sim.run(2.)

    t = sim.trange()
    x = sim.data[up]
    a_rates = sim.data[ap]
    spikes = sim.data[bp]
    b_rates = rates(t, spikes)

    if plt is not None:
        ax = plt.subplot(411)
        plt.plot(t, x)
        ax = plt.subplot(412)
        implot(plt, t, intercepts, a_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(413)
        implot(plt, t, intercepts, b_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(414)
        implot(plt, t, intercepts, (b_rates - a_rates).T, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('intercept')

    tmask = (t > 0.1) & (t < 1.9)
    relative_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])
    return relative_rmse
Exemplo n.º 10
0
def _test_rates(Simulator, rates, plt, seed, name=None):
    if name is None:
        name = rates.__name__

    n = 100
    intercepts = np.linspace(-0.99, 0.99, n)

    model = nengo.Network(seed=seed)
    with model:
        model.config[nengo.Ensemble].max_rates = Choice([50])
        model.config[nengo.Ensemble].encoders = Choice([[1]])
        u = nengo.Node(output=WhiteNoise(2., 5).f(
            rng=np.random.RandomState(seed=seed)))
        a = nengo.Ensemble(n, 1,
                           intercepts=intercepts, neuron_type=nengo.LIFRate())
        b = nengo.Ensemble(n, 1,
                           intercepts=intercepts, neuron_type=nengo.LIF())
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        up = nengo.Probe(u)
        ap = nengo.Probe(a.neurons)
        bp = nengo.Probe(b.neurons)

    sim = Simulator(model)
    sim.run(2.)

    t = sim.trange()
    x = sim.data[up]
    a_rates = sim.data[ap]
    spikes = sim.data[bp]
    b_rates = rates(t, spikes)

    ax = plt.subplot(411)
    plt.plot(t, x)
    ax = plt.subplot(412)
    implot(plt, t, intercepts, a_rates.T, ax=ax)
    ax.set_ylabel('intercept')
    ax = plt.subplot(413)
    implot(plt, t, intercepts, b_rates.T, ax=ax)
    ax.set_ylabel('intercept')
    ax = plt.subplot(414)
    implot(plt, t, intercepts, (b_rates - a_rates).T, ax=ax)
    ax.set_xlabel('time [s]')
    ax.set_ylabel('intercept')
    plt.saveas = 'utils.test_neurons.test_rates.%s.pdf' % name

    tmask = (t > 0.1) & (t < 1.9)
    relative_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])
    return relative_rmse
Exemplo n.º 11
0
def test_alif(Simulator, plt):
    """Test ALIF and ALIFRate by comparing them to each other"""

    n = 100
    max_rates = 50 * np.ones(n)
    intercepts = np.linspace(-0.99, 0.99, n)
    encoders = np.ones((n, 1))
    nparams = dict(tau_n=1, inc_n=10e-3)
    eparams = dict(n_neurons=n, max_rates=max_rates,
                   intercepts=intercepts, encoders=encoders)

    model = nengo.Network()
    with model:
        u = nengo.Node(output=0.5)
        a = nengo.Ensemble(neuron_type=AdaptiveLIFRate(**nparams),
                           dimensions=1,
                           **eparams)
        b = nengo.Ensemble(neuron_type=AdaptiveLIF(**nparams),
                           dimensions=1,
                           **eparams)
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        ap = nengo.Probe(a.neurons)
        bp = nengo.Probe(b.neurons)

    with Simulator(model) as sim:
        sim.run(2.)

    t = sim.trange()
    a_rates = sim.data[ap]
    spikes = sim.data[bp]
    b_rates = nengo.Lowpass(0.04).filtfilt(spikes)

    tmask = (t > 0.1) & (t < 1.7)
    rel_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])

    ax = plt.subplot(311)
    implot(plt, t, intercepts[::-1], a_rates.T, ax=ax)
    ax.set_ylabel('input')
    ax = plt.subplot(312)
    implot(plt, t, intercepts[::-1], b_rates.T, ax=ax)
    ax.set_ylabel('input')
    ax = plt.subplot(313)
    implot(plt, t, intercepts[::-1], (b_rates - a_rates)[tmask].T, ax=ax)
    ax.set_xlabel('time [s]')
    ax.set_ylabel('input')

    assert rel_rmse < 0.07
Exemplo n.º 12
0
def _test_rates(Simulator, rates, plt, seed):
    n = 100
    intercepts = np.linspace(-0.99, 0.99, n)

    model = nengo.Network(seed=seed)
    with model:
        model.config[nengo.Ensemble].max_rates = Choice([50])
        model.config[nengo.Ensemble].encoders = Choice([[1]])
        u = nengo.Node(output=WhiteSignal(2, high=5))
        a = nengo.Ensemble(n, 1,
                           intercepts=intercepts, neuron_type=nengo.LIFRate())
        b = nengo.Ensemble(n, 1,
                           intercepts=intercepts, neuron_type=nengo.LIF())
        nengo.Connection(u, a, synapse=0)
        nengo.Connection(u, b, synapse=0)
        up = nengo.Probe(u)
        ap = nengo.Probe(a.neurons)
        bp = nengo.Probe(b.neurons)

    with Simulator(model, seed=seed+1) as sim:
        sim.run(2.)

    t = sim.trange()
    x = sim.data[up]
    a_rates = sim.data[ap]
    spikes = sim.data[bp]
    b_rates = rates(t, spikes)

    if plt is not None:
        ax = plt.subplot(411)
        plt.plot(t, x)
        ax = plt.subplot(412)
        implot(plt, t, intercepts, a_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(413)
        implot(plt, t, intercepts, b_rates.T, ax=ax)
        ax.set_ylabel('intercept')
        ax = plt.subplot(414)
        implot(plt, t, intercepts, (b_rates - a_rates).T, ax=ax)
        ax.set_xlabel('time [s]')
        ax.set_ylabel('intercept')

    tmask = (t > 0.1) & (t < 1.9)
    relative_rmse = rms(b_rates[tmask] - a_rates[tmask]) / rms(a_rates[tmask])
    return relative_rmse