Exemplo n.º 1
0
def test_conv_split(Simulator, rng, plt, allclose):
    channels_last = False

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    input_shape = nengo_transforms.ChannelShape((1, 28, 28),
                                                channels_last=channels_last)

    n_filters = 8
    kernel_size = (7, 7)
    kernel = Gabor(freq=Uniform(0.5, 1)).generate(n_filters,
                                                  kernel_size,
                                                  rng=rng)
    kernel = kernel[None, :, :, :]  # single channel
    kernel = np.transpose(kernel, (2, 3, 0, 1))
    strides = (2, 2)

    seed = 3  # fix seed to do the same computation for both channel positions

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        a = nengo.Node(test10[0][0].ravel())

        # --- make population to turn image into spikes
        nc = 1
        in_kernel = np.array([1.]).reshape((1, 1, 1, nc))
        transform = nengo_transforms.Convolution(1,
                                                 input_shape,
                                                 kernel_size=(1, 1),
                                                 init=in_kernel,
                                                 channels_last=channels_last)
        b = nengo.Ensemble(transform.output_shape.size,
                           1,
                           neuron_type=nengo.SpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([50]),
                           intercepts=nengo.dists.Choice([0]))
        net.config[b].on_chip = False
        nengo.Connection(a, b.neurons, transform=transform)
        in_shape = transform.output_shape

        transform = nengo_transforms.Convolution(n_filters,
                                                 in_shape,
                                                 kernel_size=kernel_size,
                                                 strides=strides,
                                                 init=kernel,
                                                 channels_last=channels_last)
        out_shape = transform.output_shape
        split_slices = conv.split_channels(out_shape,
                                           max_size=1024,
                                           max_channels=4)

        # --- make convolution population, split across ensembles
        cc = []
        cp = []
        out_shapes = []
        xslice = conv.ImageSlice(in_shape)
        for yslice in split_slices:
            transform_xy = conv.split_transform(transform, xslice, yslice)
            out_shapes.append(transform_xy.output_shape)
            c = nengo.Ensemble(transform_xy.output_shape.size,
                               1,
                               neuron_type=nengo.LIF(),
                               max_rates=nengo.dists.Choice([15]),
                               intercepts=nengo.dists.Choice([0]))
            nengo.Connection(b.neurons, c.neurons, transform=transform_xy)
            cc.append(c)
            cp.append(nengo.Probe(c.neurons))

    simtime = 0.3

    with nengo.Simulator(net, optimize=False) as sim_nengo:
        sim_nengo.run(simtime)

    hw_opts = dict(snip_max_spikes_per_step=100)
    with Simulator(net, seed=seed, hardware_options=hw_opts) as sim_loihi:
        sim_loihi.run(simtime)

    nengo_out = []
    loihi_out = []
    for p, out_shape_i in zip(cp, out_shapes):
        nengo_out.append(
            (sim_nengo.data[p] > 0).sum(axis=0).reshape(out_shape_i.shape))
        loihi_out.append(
            (sim_loihi.data[p] > 0).sum(axis=0).reshape(out_shape_i.shape))

    if channels_last:
        nengo_out = np.concatenate(nengo_out, axis=2)
        loihi_out = np.concatenate(loihi_out, axis=2)

        # put channels first to display them separately
        nengo_out = np.transpose(nengo_out, (2, 0, 1))
        loihi_out = np.transpose(loihi_out, (2, 0, 1))
    else:
        nengo_out = np.concatenate(nengo_out, axis=0)
        loihi_out = np.concatenate(loihi_out, axis=0)

    out_max = np.maximum(nengo_out.max(), loihi_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test10[0][0].reshape((28, 28)), vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(kernel[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(nengo_out.ravel(), bins=31)
    plt.hist(loihi_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(nengo_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(loihi_out, vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(loihi_out, nengo_out, atol=0.05 * out_max, rtol=0.15)
Exemplo n.º 2
0
def test_imshow_color_vlim(plt):
    image = wave_image((31, 32), 0.6, color=(1, 1, 0))
    image = 2*image - 1
    ne_plt.imshow(image, vmin=-1, vmax=1)
Exemplo n.º 3
0
def test_conv_connection(channels, channels_last, Simulator, seed, rng, plt,
                         allclose):
    if channels_last:
        plt.saveas = None
        pytest.xfail("Blocked by CxBase cannot be > 256 bug")

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    input_shape = nengo_transforms.ChannelShape(
        (test_x.shape + (channels, )) if channels_last else
        ((channels, ) + test_x.shape),
        channels_last=channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (2, 3, 0, 1))
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005
    dt = 0.001

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(test_x.ravel(), label="u")

        a = nengo.Ensemble(input_shape.size,
                           1,
                           neuron_type=LoihiSpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([40 / channels]),
                           intercepts=nengo.dists.Choice([0]),
                           label='a')
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.spatial_shape[0] * input_shape.spatial_shape[1]
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.concatenate([filters, -filters], axis=2)
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = nengo_transforms.Convolution(
            8,
            input_shape,
            strides=strides,
            kernel_size=(7, 7),
            channels_last=channels_last,
            init=filters)

        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([gain[0]]),
                           bias=nengo.dists.Choice([bias[0]]),
                           label='b')
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, dt=dt, optimize=False) as sim:
        sim.run(pres_time)
    ref_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape)

    # Currently, non-gpu TensorFlow does not support channels first in conv
    use_nengo_dl = HAS_DL and channels_last
    ndl_out = np.zeros_like(ref_out)
    if use_nengo_dl:
        with nengo_dl.Simulator(model, dt=dt) as sim_dl:
            sim_dl.run(pres_time)
        ndl_out = sim_dl.data[bp].mean(axis=0).reshape(output_shape.shape)

    with nengo_loihi.Simulator(model, dt=dt, target='simreal') as sim_real:
        sim_real.run(pres_time)
    real_out = sim_real.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, dt=dt) as sim_loihi:
        if "loihi" in sim_loihi.sims:
            sim_loihi.sims["loihi"].snip_max_spikes_per_step = 800
        sim_loihi.run(pres_time)
    sim_out = sim_loihi.data[bp].mean(axis=0).reshape(output_shape.shape)

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        ndl_out = np.transpose(ndl_out, (1, 2, 0))
        real_out = np.transpose(real_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(ndl_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    if use_nengo_dl:
        assert allclose(ndl_out, ref_out, atol=1e-5, rtol=1e-5)
    assert allclose(real_out, ref_out, atol=1, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
Exemplo n.º 4
0
def test_imshow_gray(plt):
    image = wave_image((31, 32), 0.2)
    ne_plt.imshow(image)
Exemplo n.º 5
0
def test_imshow_color(plt):
    image = wave_image((31, 32), 0.6, color=(1, 1, 0))
    ne_plt.imshow(image)
Exemplo n.º 6
0
def test_conv_connection(channels, channels_last, Simulator, seed, rng, plt,
                         allclose):
    # load data
    with open(os.path.join(test_dir, "mnist10.pkl"), "rb") as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape((28, 28))
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    input_shape = make_channel_shape(test_x.shape, channels, channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (2, 3, 0, 1))
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(test_x.ravel(), label="u")

        a = nengo.Ensemble(
            input_shape.size,
            1,
            neuron_type=LoihiSpikingRectifiedLinear(),
            max_rates=nengo.dists.Choice([40 / channels]),
            intercepts=nengo.dists.Choice([0]),
            label="a",
        )
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.spatial_shape[0] * input_shape.spatial_shape[1]
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.concatenate([filters, -filters], axis=2)
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = nengo_transforms.Convolution(
            8,
            input_shape,
            strides=strides,
            kernel_size=(7, 7),
            channels_last=channels_last,
            init=filters,
        )

        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(
            output_shape.size,
            1,
            neuron_type=neuron_type,
            gain=nengo.dists.Choice([gain[0]]),
            bias=nengo.dists.Choice([bias[0]]),
            label="b",
        )
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, optimize=False) as sim_nengo:
        sim_nengo.run(pres_time)
    ref_out = sim_nengo.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, target="simreal") as sim_emu:
        sim_emu.run(pres_time)
    emu_out = sim_emu.data[bp].mean(axis=0).reshape(output_shape.shape)

    with Simulator(model, hardware_options={"snip_max_spikes_per_step":
                                            800}) as sim_loihi:
        sim_loihi.run(pres_time)
    sim_out = sim_loihi.data[bp].mean(axis=0).reshape(output_shape.shape)

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        emu_out = np.transpose(emu_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), emu_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(emu_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    assert allclose(emu_out, ref_out, atol=10, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)
Exemplo n.º 7
0
def test_conv_deepnet(
    channels_last,
    pop_type,
    precompute,
    Simulator,
    request,
    rng,
    seed,
    plt,
    allclose,
):
    """Run a convolutional network with two layers on the chip.

    Checks that network with block splitting on the target matches one without
    on the emulator.
    """
    # TODO: This case fails in NxSDK 0.9.0 but will be fixed in the next version.
    # Remove this check once the next version is released.
    if pop_type == 32:
        pytest.skip("Pop32 multichip test requires latest NxSDK")

    def set_partition(partition):
        os.environ["PARTITION"] = partition

    request.addfinalizer(lambda: set_partition(""))
    # multichip pop_type = 16 works only on nahuku32 board currently
    if pop_type == 16:
        set_partition("nahuku32")

    def conv_layer(x,
                   input_shape,
                   array_init=None,
                   label=None,
                   conn_args=None,
                   **conv_args):
        conn_args = {} if conn_args is None else conn_args

        if array_init is not None:
            assert all(a not in conv_args
                       for a in ("init", "kernel_size", "n_filters"))
            assert array_init.ndim == 4
            conv_args["init"] = array_init
            conv_args["kernel_size"] = array_init.shape[:2]
            assert array_init.shape[2] == input_shape.n_channels
            conv_args["n_filters"] = array_init.shape[3]

        conv = nengo.Convolution(input_shape=input_shape, **conv_args)

        # add an ensemble to implement the activation function
        layer = nengo.Ensemble(conv.output_shape.size, 1, label=label)

        # connect up the input object to the new layer
        conn = nengo.Connection(x, layer.neurons, transform=conv)

        return layer, conv, conn

    channels = 1
    n_filters0 = 1
    n_filters1 = 4
    n_filters2 = 4

    # load data
    with open(os.path.join(test_dir, "mnist10.pkl"), "rb") as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)  # range (0, 1)
    input_shape = make_channel_shape(test_x.shape, channels, channels_last)

    filters0 = np.ones((1, 1, channels, n_filters0))

    # use Gabor filters for first layer
    filters1 = Gabor(freq=Uniform(0.5, 1),
                     sigma_x=Choice([0.9]),
                     sigma_y=Choice([0.9])).generate(n_filters1, (7, 7),
                                                     rng=rng)
    assert n_filters0 == 1
    filters1 = filters1[None, :, :, :]  # single channel
    filters1 = np.transpose(filters1,
                            (2, 3, 0, 1))  # rows, cols, in_chan, out_chan

    # use random combinations of first-layer channels in 1x1 convolution
    filters2 = rng.uniform(-0.2, 1,
                           size=(n_filters1, n_filters2)).clip(0, None)
    filters2 *= 2 / filters2.sum(axis=0,
                                 keepdims=True)  # each filter sums to 2
    filters2 = filters2[None, None, :, :]  # rows, cols, in_chan, out_chan

    tau_s = 0.001
    max_rate = 100
    amp = 1 / max_rate
    f_split = 2 if pop_type == 32 else 4

    # use Loihi neuron type so Nengo sim mimics Loihi neuron effects
    neuron_type = LoihiSpikingRectifiedLinear(amplitude=amp)

    pres_time = 0.2

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        net.config[nengo.Ensemble].neuron_type = neuron_type
        net.config[nengo.Ensemble].max_rates = Choice([max_rate])
        net.config[nengo.Ensemble].intercepts = Choice([0])
        net.config[nengo.Connection].synapse = tau_s

        u = nengo.Node(test_x.ravel(), label="u")

        layer0, conv0, conn0 = conv_layer(
            u,
            input_shape=input_shape,
            array_init=filters0,
            strides=(1, 1),
            channels_last=channels_last,
            label="layer0",
            conn_args=dict(synapse=None),
        )
        net.config[layer0].on_chip = False

        layer1, conv1, conn1 = conv_layer(
            layer0.neurons,
            input_shape=conv0.output_shape,
            array_init=filters1,
            strides=(2, 2),
            channels_last=channels_last,
            label="layer1",
        )
        net.config[layer1].block_shape = nengo_loihi.BlockShape(
            make_shape((4, 4), f_split, channels_last), conv1)
        net.config[conn1].pop_type = pop_type

        layer2, conv2, conn2 = conv_layer(
            layer1.neurons,
            input_shape=conv1.output_shape,
            array_init=filters2,
            strides=(1, 1),
            channels_last=channels_last,
            label="layer2",
        )
        net.config[layer2].block_shape = nengo_loihi.BlockShape(
            make_shape((4, 4), f_split, channels_last), conv2)
        net.config[conn2].pop_type = pop_type

        output_p = nengo.Probe(layer2.neurons)
        output_shape = conv2.output_shape

    with nengo.Simulator(net, optimize=False) as sim_nengo:
        sim_nengo.run(pres_time)
        ref_out = (sim_nengo.data[output_p] > 0).sum(axis=0).reshape(
            output_shape.shape)

    with Simulator(net, target="sim") as sim_emu:
        sim_emu.run(pres_time)
        emu_out = (sim_emu.data[output_p] > 0).sum(axis=0).reshape(
            output_shape.shape)

    # TODO: Remove the if condition when configurable timeout parameter
    # is available in nxsdk
    if (pop_type == 32 or
            os.popen("sinfo -h --partition=nahuku32").read().find("idle") > 0):
        with Simulator(
                net,
                precompute=precompute,
                hardware_options={
                    "allocator": RoundRobin(),
                    "snip_max_spikes_per_step": 800,
                },
        ) as sim_loihi:
            sim_loihi.run(pres_time)
            sim_out = ((sim_loihi.data[output_p] > 0).sum(axis=0).reshape(
                output_shape.shape))
    elif nengo_loihi.version.dev is None:
        pytest.fail(
            "Pop16 multichip test failed since Nahuku32 is unavailable")
    else:
        pytest.skip(
            "Pop16 multichip test skipped since Nahuku32 is unavailable")

    out_max = ref_out.max()
    ref_out = ref_out / out_max
    emu_out = emu_out / out_max
    sim_out = sim_out / out_max

    if channels_last:
        # channels first, to display channels in separate plots
        ref_out = np.transpose(ref_out, (2, 0, 1))
        emu_out = np.transpose(emu_out, (2, 0, 1))
        sim_out = np.transpose(sim_out, (2, 0, 1))

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters1, (2, 3, 0, 1))[0],
         rows=2,
         cols=2,
         grid=True,
         ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist((ref_out.ravel(), emu_out.ravel(), sim_out.ravel()), bins=21)

    ax = plt.subplot(rows, cols, 4)
    tile(ref_out, rows=2, cols=2, grid=True, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(emu_out, rows=2, cols=2, grid=True, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(sim_out, rows=2, cols=2, grid=True, ax=ax)

    assert allclose(sim_out, ref_out, atol=0.15, rtol=1e-3)
    assert allclose(sim_out, emu_out, atol=1e-3, rtol=1e-3)
Exemplo n.º 8
0
plt.figure(figsize=(6.4, 7))
rows = 2 + len(spike_ps)
cols = n_presentations

neuron_inds = [rng.permutation(block.shape[-1])[:40] for block in spike_blocks]

for col in range(cols):
    label0 = label_names[Ytest[col]]
    tj = sim.dt * np.arange(nt) + col * presentation_time

    # plot image
    ax = plt.subplot(rows, cols, 0 * cols + col + 1)
    neplt.imshow(np.transpose(Xtest[col], (1, 2, 0)),
                 vmin=-128,
                 vmax=128,
                 ax=ax,
                 axes=True)
    ax.set_title(label0)
    ax.xaxis.set_ticks([])
    ax.yaxis.set_ticks([])
    if col == 0:
        ax.set_ylabel('input')

    # plot spike rasters
    for i, (spike_block,
            neuron_ind) in enumerate(zip(spike_blocks, neuron_inds)):
        ax = plt.subplot(rows, cols, (i + 1) * cols + col + 1)
        rasterplot(tj, spike_block[col][:, neuron_ind], ax=ax)
        ax.xaxis.set_ticks([])
        ax.yaxis.set_ticks([])
Exemplo n.º 9
0
def test_imshow_color_vlim(plt):
    image = wave_image((31, 32), 0.6, color=(1, 1, 0))
    image = 2 * image - 1
    ne_plt.imshow(image, vmin=-1, vmax=1)
Exemplo n.º 10
0
def test_imshow_color(plt):
    image = wave_image((31, 32), 0.6, color=(1, 1, 0))
    ne_plt.imshow(image)
Exemplo n.º 11
0
def test_imshow_gray(plt):
    image = wave_image((31, 32), 0.2)
    ne_plt.imshow(image)
Exemplo n.º 12
0
def test_conv_connection(channels, Simulator, seed, rng, plt, allclose):
    # channels_last = True
    channels_last = False
    if channels > 1:
        pytest.xfail("Cannot send population spikes to chip")

    # load data
    with open(os.path.join(test_dir, 'mnist10.pkl'), 'rb') as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)
    test_x = 1.999 * test_x - 0.999  # range (-1, 1)
    test_x = test_x[:, :, None]  # single channel
    input_shape = ImageShape(test_x.shape[0],
                             test_x.shape[1],
                             channels,
                             channels_last=channels_last)

    filters = Gabor(freq=Uniform(0.5, 1)).generate(8, (7, 7), rng=rng)
    filters = filters[None, :, :, :]  # single channel
    filters = np.transpose(filters, (0, 2, 3, 1))  # filters last
    strides = (2, 2)
    tau_rc = 0.02
    tau_ref = 0.002
    tau_s = 0.005
    dt = 0.001

    neuron_type = LoihiLIF(tau_rc=tau_rc, tau_ref=tau_ref)

    pres_time = 0.1

    with nengo.Network(seed=seed) as model:
        nengo_loihi.add_params(model)

        u = nengo.Node(nengo.processes.PresentInput([test_x.ravel()],
                                                    pres_time),
                       label='u')

        a = nengo.Ensemble(input_shape.size,
                           1,
                           neuron_type=LoihiSpikingRectifiedLinear(),
                           max_rates=nengo.dists.Choice([40 / channels]),
                           intercepts=nengo.dists.Choice([0]),
                           label='a')
        model.config[a].on_chip = False

        if channels == 1:
            nengo.Connection(u, a.neurons, transform=1, synapse=None)
        elif channels == 2:
            # encode image into spikes using two channels (on/off)
            if input_shape.channels_last:
                nengo.Connection(u, a.neurons[0::2], transform=1, synapse=None)
                nengo.Connection(u,
                                 a.neurons[1::2],
                                 transform=-1,
                                 synapse=None)
            else:
                k = input_shape.rows * input_shape.cols
                nengo.Connection(u, a.neurons[:k], transform=1, synapse=None)
                nengo.Connection(u, a.neurons[k:], transform=-1, synapse=None)

            filters = np.vstack([filters, -filters])
        else:
            raise ValueError("Test not configured for more than two channels")

        conv2d_transform = Conv2D.from_kernel(filters,
                                              input_shape,
                                              strides=strides)
        output_shape = conv2d_transform.output_shape

        gain, bias = neuron_type.gain_bias(max_rates=100, intercepts=0)
        gain = gain * 0.01  # account for `a` max_rates
        b = nengo.Ensemble(output_shape.size,
                           1,
                           neuron_type=neuron_type,
                           gain=nengo.dists.Choice([gain[0]]),
                           bias=nengo.dists.Choice([bias[0]]),
                           label='b')
        nengo.Connection(a.neurons,
                         b.neurons,
                         synapse=tau_s,
                         transform=conv2d_transform)

        bp = nengo.Probe(b.neurons)

    with nengo.Simulator(model, dt=dt, optimize=False) as sim:
        sim.run(pres_time)
    ref_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    # Currently, default TensorFlow does not support channels first in conv
    use_nengo_dl = nengo_dl is not None and channels_last
    ndl_out = np.zeros_like(ref_out)
    if use_nengo_dl:
        with nengo_dl.Simulator(model, dt=dt) as sim:
            sim.run(pres_time)
        ndl_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    with nengo_loihi.Simulator(model, dt=dt, target='simreal') as sim:
        sim.run(pres_time)
    real_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    with Simulator(model, dt=dt) as sim:
        sim.run(pres_time)
    sim_out = sim.data[bp].mean(axis=0).reshape(output_shape.shape())

    if not output_shape.channels_last:
        ref_out = np.transpose(ref_out, (1, 2, 0))
        ndl_out = np.transpose(ndl_out, (1, 2, 0))
        real_out = np.transpose(real_out, (1, 2, 0))
        sim_out = np.transpose(sim_out, (1, 2, 0))

    out_max = max(ref_out.max(), sim_out.max())

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters[0], (2, 0, 1)), cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist(ref_out.ravel(), bins=31)
    plt.hist(sim_out.ravel(), bins=31)

    ax = plt.subplot(rows, cols, 4)
    tile(np.transpose(ref_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(np.transpose(ndl_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(np.transpose(sim_out, (2, 0, 1)), vmin=0, vmax=out_max, cols=8, ax=ax)

    if use_nengo_dl:
        assert allclose(ndl_out, ref_out, atol=1e-5, rtol=1e-5)
    assert allclose(real_out, ref_out, atol=1, rtol=1e-3)
    assert allclose(sim_out, ref_out, atol=10, rtol=1e-3)