Exemplo n.º 1
0
def test_sliced_probe(allclose, probe_slice, Simulator):
    n_neurons = 16
    # The bias should be the same for each block, but different within the block
    # to see some variety. This gives bias 0, 1, 2, 3 to the four neurons in the
    # 2 by 2 block.
    bias = np.tile(np.arange(4).reshape((2, 2)), (2, 2)).flatten()

    with nengo.Network() as net:
        e = nengo.Ensemble(n_neurons, 1, gain=np.zeros(n_neurons), bias=bias)
        p = nengo.Probe(e.neurons[probe_slice], "voltage", synapse=0.002)

    with Simulator(net) as ref_sim:
        ref_sim.run(0.01)

    ref_voltages = ref_sim.data[p]

    with net:
        nengo_loihi.add_params(net)
        net.config[e].block_shape = nengo_loihi.BlockShape((2, 2), (n_neurons // 4, 4))

    with Simulator(net) as split_sim:
        split_sim.run(ref_sim.time)

    split_voltages = split_sim.data[p]

    assert np.all(ref_sim.data[e].gain == split_sim.data[e].gain)
    assert np.all(ref_sim.data[e].bias == split_sim.data[e].bias)

    assert allclose(split_voltages, ref_voltages)
Exemplo n.º 2
0
def test_split_ensembles(Simulator, seed, rng, plt, allclose):
    b_fn = lambda x: x**2

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        u = nengo.Node(lambda t: np.sin(4 * np.pi * t))
        up = nengo.Probe(u, synapse=0.03)

        # test auto-splitting large block
        a = nengo.Ensemble(1100, 1, label="a")
        nengo.Connection(u, a, synapse=None)

        ap = nengo.Probe(a, synapse=0.03)

        # test connection between two split blocks
        b = nengo.Ensemble(400, 1, label="b", seed=seed + 1)
        nengo.Connection(a, b, function=b_fn, seed=seed + 2)
        net.config[b].block_shape = nengo_loihi.BlockShape((134,), (400,))

        bp = nengo.Probe(b, synapse=0.03)
        bp10 = nengo.Probe(b[:10], synapse=0.03)

        # have one block not be split
        c = nengo.Ensemble(400, 1, label="c", seed=seed + 1)
        nengo.Connection(a, c, function=b_fn, seed=seed + 2)

        cp = nengo.Probe(c, synapse=0.03)

        # TODO: uncomment when we allow connections to neuron slices

        # ensemble with input to not all blocks, to check synapse splitting,
        # specifically the `if len(axon_ids) == 0: continue` in `split_syanpse`.
        # However we currently don't allow connections to neuron slices, so ignore.
        # d_enc = nengo.dists.UniformHypersphere(surface=True).sample(400, d=1, rng=rng)
        # d = nengo.Ensemble(400, 1, label="d", encoders=d_enc)
        # net.config[d].block_shape = nengo_loihi.BlockShape((134,), (400,))
        # nengo.Connection(a, d.neurons[:200], transform=d_enc[:200])
        # nengo.Connection(a, d.neurons[200:], transform=d_enc[200:])

    with Simulator(net) as sim:
        sim.run(0.5)

        assert len(sim.model.objs[a]["out"]) == 2
        assert len(sim.model.objs[b]["out"]) == 3
        assert len(sim.model.objs[c]["out"]) == 1

    y = b_fn(nengo.synapses.Lowpass(0.01).filt(sim.data[up], dt=sim.dt))
    plt.plot(sim.trange(), sim.data[up], "k", label="Ideal x")
    plt.plot(sim.trange(), sim.data[ap], label="x")
    plt.plot(sim.trange(), y, "k", label="Ideal x ** 2")
    plt.plot(sim.trange(), sim.data[bp], label="x ** 2, two blocks")
    plt.plot(sim.trange(), sim.data[cp], label="x ** 2, one block")
    plt.legend()

    assert allclose(sim.data[ap], sim.data[up], atol=0.15)

    assert allclose(sim.data[bp10], sim.data[bp][:, :10])

    # b and c have same seeds, so should be very similar. However, since one
    # is split and one is not, discretizing the blocks after splitting means
    # that there will be slight numerical differences.
    assert allclose(sim.data[cp], sim.data[bp], atol=0.02)

    assert allclose(sim.data[bp], y, atol=0.2)
Exemplo n.º 3
0
    nengo_sim.freeze_params(net)

with net:
    nengo_input.output = nengo.processes.PresentInput(
        test_data, presentation_time=pres_time)

# set off-chip layer
with net:
    nengo_loihi.add_params(net)
    net.config[nengo_converter.layers[to_spikes].ensemble].on_chip = False

# set on-chip layers
with net:
    L1_shape = L1_layer.output_shape[1:]
    net.config[nengo_converter.layers[L1].
               ensemble].block_shape = nengo_loihi.BlockShape((50, ), L1_shape)

    L2_shape = L2_layer.output_shape[1:]
    net.config[nengo_converter.layers[L2].
               ensemble].block_shape = nengo_loihi.BlockShape((50, ), L2_shape)

    L3_shape = L3_layer.output_shape[1:]
    net.config[nengo_converter.layers[L3].
               ensemble].block_shape = nengo_loihi.BlockShape((50, ), L3_shape)

print_neurons_type(nengo_converter)

# build Nengo Loihi Simulator and run network
with nengo_loihi.Simulator(net) as loihi_sim:
    loihi_sim.run(n_test * pres_time)
Exemplo n.º 4
0
def test_conv_deepnet(
    channels_last,
    pop_type,
    precompute,
    Simulator,
    request,
    rng,
    seed,
    plt,
    allclose,
):
    """Run a convolutional network with two layers on the chip.

    Checks that network with block splitting on the target matches one without
    on the emulator.
    """
    # TODO: This case fails in NxSDK 0.9.0 but will be fixed in the next version.
    # Remove this check once the next version is released.
    if pop_type == 32:
        pytest.skip("Pop32 multichip test requires latest NxSDK")

    def set_partition(partition):
        os.environ["PARTITION"] = partition

    request.addfinalizer(lambda: set_partition(""))
    # multichip pop_type = 16 works only on nahuku32 board currently
    if pop_type == 16:
        set_partition("nahuku32")

    def conv_layer(x,
                   input_shape,
                   array_init=None,
                   label=None,
                   conn_args=None,
                   **conv_args):
        conn_args = {} if conn_args is None else conn_args

        if array_init is not None:
            assert all(a not in conv_args
                       for a in ("init", "kernel_size", "n_filters"))
            assert array_init.ndim == 4
            conv_args["init"] = array_init
            conv_args["kernel_size"] = array_init.shape[:2]
            assert array_init.shape[2] == input_shape.n_channels
            conv_args["n_filters"] = array_init.shape[3]

        conv = nengo.Convolution(input_shape=input_shape, **conv_args)

        # add an ensemble to implement the activation function
        layer = nengo.Ensemble(conv.output_shape.size, 1, label=label)

        # connect up the input object to the new layer
        conn = nengo.Connection(x, layer.neurons, transform=conv)

        return layer, conv, conn

    channels = 1
    n_filters0 = 1
    n_filters1 = 4
    n_filters2 = 4

    # load data
    with open(os.path.join(test_dir, "mnist10.pkl"), "rb") as f:
        test10 = pickle.load(f)

    test_x = test10[0][0].reshape(28, 28)  # range (0, 1)
    input_shape = make_channel_shape(test_x.shape, channels, channels_last)

    filters0 = np.ones((1, 1, channels, n_filters0))

    # use Gabor filters for first layer
    filters1 = Gabor(freq=Uniform(0.5, 1),
                     sigma_x=Choice([0.9]),
                     sigma_y=Choice([0.9])).generate(n_filters1, (7, 7),
                                                     rng=rng)
    assert n_filters0 == 1
    filters1 = filters1[None, :, :, :]  # single channel
    filters1 = np.transpose(filters1,
                            (2, 3, 0, 1))  # rows, cols, in_chan, out_chan

    # use random combinations of first-layer channels in 1x1 convolution
    filters2 = rng.uniform(-0.2, 1,
                           size=(n_filters1, n_filters2)).clip(0, None)
    filters2 *= 2 / filters2.sum(axis=0,
                                 keepdims=True)  # each filter sums to 2
    filters2 = filters2[None, None, :, :]  # rows, cols, in_chan, out_chan

    tau_s = 0.001
    max_rate = 100
    amp = 1 / max_rate
    f_split = 2 if pop_type == 32 else 4

    # use Loihi neuron type so Nengo sim mimics Loihi neuron effects
    neuron_type = LoihiSpikingRectifiedLinear(amplitude=amp)

    pres_time = 0.2

    with nengo.Network(seed=seed) as net:
        nengo_loihi.add_params(net)

        net.config[nengo.Ensemble].neuron_type = neuron_type
        net.config[nengo.Ensemble].max_rates = Choice([max_rate])
        net.config[nengo.Ensemble].intercepts = Choice([0])
        net.config[nengo.Connection].synapse = tau_s

        u = nengo.Node(test_x.ravel(), label="u")

        layer0, conv0, conn0 = conv_layer(
            u,
            input_shape=input_shape,
            array_init=filters0,
            strides=(1, 1),
            channels_last=channels_last,
            label="layer0",
            conn_args=dict(synapse=None),
        )
        net.config[layer0].on_chip = False

        layer1, conv1, conn1 = conv_layer(
            layer0.neurons,
            input_shape=conv0.output_shape,
            array_init=filters1,
            strides=(2, 2),
            channels_last=channels_last,
            label="layer1",
        )
        net.config[layer1].block_shape = nengo_loihi.BlockShape(
            make_shape((4, 4), f_split, channels_last), conv1)
        net.config[conn1].pop_type = pop_type

        layer2, conv2, conn2 = conv_layer(
            layer1.neurons,
            input_shape=conv1.output_shape,
            array_init=filters2,
            strides=(1, 1),
            channels_last=channels_last,
            label="layer2",
        )
        net.config[layer2].block_shape = nengo_loihi.BlockShape(
            make_shape((4, 4), f_split, channels_last), conv2)
        net.config[conn2].pop_type = pop_type

        output_p = nengo.Probe(layer2.neurons)
        output_shape = conv2.output_shape

    with nengo.Simulator(net, optimize=False) as sim_nengo:
        sim_nengo.run(pres_time)
        ref_out = (sim_nengo.data[output_p] > 0).sum(axis=0).reshape(
            output_shape.shape)

    with Simulator(net, target="sim") as sim_emu:
        sim_emu.run(pres_time)
        emu_out = (sim_emu.data[output_p] > 0).sum(axis=0).reshape(
            output_shape.shape)

    # TODO: Remove the if condition when configurable timeout parameter
    # is available in nxsdk
    if (pop_type == 32 or
            os.popen("sinfo -h --partition=nahuku32").read().find("idle") > 0):
        with Simulator(
                net,
                precompute=precompute,
                hardware_options={
                    "allocator": RoundRobin(),
                    "snip_max_spikes_per_step": 800,
                },
        ) as sim_loihi:
            sim_loihi.run(pres_time)
            sim_out = ((sim_loihi.data[output_p] > 0).sum(axis=0).reshape(
                output_shape.shape))
    elif nengo_loihi.version.dev is None:
        pytest.fail(
            "Pop16 multichip test failed since Nahuku32 is unavailable")
    else:
        pytest.skip(
            "Pop16 multichip test skipped since Nahuku32 is unavailable")

    out_max = ref_out.max()
    ref_out = ref_out / out_max
    emu_out = emu_out / out_max
    sim_out = sim_out / out_max

    if channels_last:
        # channels first, to display channels in separate plots
        ref_out = np.transpose(ref_out, (2, 0, 1))
        emu_out = np.transpose(emu_out, (2, 0, 1))
        sim_out = np.transpose(sim_out, (2, 0, 1))

    # --- plot results
    rows = 2
    cols = 3

    ax = plt.subplot(rows, cols, 1)
    imshow(test_x, vmin=0, vmax=1, ax=ax)

    ax = plt.subplot(rows, cols, 2)
    tile(np.transpose(filters1, (2, 3, 0, 1))[0],
         rows=2,
         cols=2,
         grid=True,
         ax=ax)

    ax = plt.subplot(rows, cols, 3)
    plt.hist((ref_out.ravel(), emu_out.ravel(), sim_out.ravel()), bins=21)

    ax = plt.subplot(rows, cols, 4)
    tile(ref_out, rows=2, cols=2, grid=True, ax=ax)

    ax = plt.subplot(rows, cols, 5)
    tile(emu_out, rows=2, cols=2, grid=True, ax=ax)

    ax = plt.subplot(rows, cols, 6)
    tile(sim_out, rows=2, cols=2, grid=True, ax=ax)

    assert allclose(sim_out, ref_out, atol=0.15, rtol=1e-3)
    assert allclose(sim_out, emu_out, atol=1e-3, rtol=1e-3)
Exemplo n.º 5
0
with nengo_dl.Simulator(net) as nengo_sim:
    nengo_sim.load_params("keras_to_loihi_loihineuron_params")
    nengo_sim.freeze_params(net)

with net:
    nengo_input.output = nengo.processes.PresentInput(
        test_images, presentation_time=pres_time)

with net:
    nengo_loihi.add_params(net)  # allow on_chip to be set
    net.config[nengo_converter.layers[to_spikes].ensemble].on_chip = False

with net:
    conv0_shape = conv0_layer.output_shape[1:]
    net.config[nengo_converter.layers[conv0].
               ensemble].block_shape = nengo_loihi.BlockShape((16, 16, 4),
                                                              conv0_shape)

    conv1_shape = conv1_layer.output_shape[1:]
    net.config[nengo_converter.layers[conv1].
               ensemble].block_shape = nengo_loihi.BlockShape((8, 8, 16),
                                                              conv1_shape)

    dense0_shape = dense0_layer.output_shape[1:]
    net.config[nengo_converter.layers[dense0].
               ensemble].block_shape = nengo_loihi.BlockShape((50, ),
                                                              dense0_shape)

# build Nengo Loihi Simulator and run network
with nengo_loihi.Simulator(net) as loihi_sim:
    loihi_sim.run(n_test * pres_time)
Exemplo n.º 6
0
    nengo_sim.freeze_params(net)

with net:
    nengo_input.output = nengo.processes.PresentInput(
        test_data, presentation_time=pres_time)

# set off-chip layer
with net:
    nengo_loihi.add_params(net)
    net.config[nengo_converter.layers[to_spikes].ensemble].on_chip = False

# set on-chip layers
with net:
    L1_shape = L1_layer.output_shape[1:]
    net.config[nengo_converter.layers[L1].
               ensemble].block_shape = nengo_loihi.BlockShape((16, 16, 4),
                                                              L1_shape)

    L2_shape = L2_layer.output_shape[1:]
    net.config[nengo_converter.layers[L2].
               ensemble].block_shape = nengo_loihi.BlockShape((8, 8, 16),
                                                              L2_shape)

    L3_shape = L3_layer.output_shape[1:]
    net.config[nengo_converter.layers[L3].
               ensemble].block_shape = nengo_loihi.BlockShape((4, 4, 32),
                                                              L3_shape)

    L4_shape = L4_layer.output_shape[1:]
    net.config[nengo_converter.layers[L4].
               ensemble].block_shape = nengo_loihi.BlockShape((2, 2, 64),
                                                              L4_shape)