Exemplo n.º 1
0
    def __init__(
            self, dimensions, strict=True, max_similarity=0.1,
            pointer_gen=None, name=None, algebra=None):
        if algebra is None:
            algebra = HrrAlgebra()
        self.algebra = algebra

        if not is_integer(dimensions) or dimensions < 1:
            raise ValidationError("dimensions must be a positive integer",
                                  attr='dimensions', obj=self)

        if pointer_gen is None:
            pointer_gen = UnitLengthVectors(dimensions)
        elif isinstance(pointer_gen, np.random.RandomState):
            pointer_gen = UnitLengthVectors(dimensions, pointer_gen)

        if not is_iterable(pointer_gen) or is_string(pointer_gen):
            raise ValidationError(
                "pointer_gen must be iterable or RandomState",
                attr='pointer_gen', obj=self)

        self.dimensions = dimensions
        self.strict = strict
        self.max_similarity = max_similarity
        self._key2idx = {}
        self._keys = []
        self._vectors = np.zeros((0, dimensions), dtype=float)
        self.pointer_gen = pointer_gen
        self.name = name
def ssp_weighted_plane_basis(K, W):
    # The above but plane waves aren't just all summed. Instead there's a weighted sum - can get distortions in patterns
    # or make place cells more refined this way
    d = K.shape[0]
    FX = np.ones((d * 2 + 1, ), dtype="complex")
    FX[0:d] = W * np.exp(1.j * K[:, 0])
    FX[-d:] = np.flip(np.conj(FX[0:d]))
    FX = np.fft.ifftshift(FX)
    FY = np.ones((d * 2 + 1, ), dtype="complex")
    FY[0:d] = W * np.exp(1.j * K[:, 1])
    FY[-d:] = np.flip(np.conj(FY[0:d]))
    FY = np.fft.ifftshift(FY)

    X = SemanticPointer(data=np.fft.ifft(FX), algebra=HrrAlgebra())
    Y = SemanticPointer(data=np.fft.ifft(FY), algebra=HrrAlgebra())
    return X, Y
def ssp(X, Y, x, y, alg=HrrAlgebra()):
    # Return a ssp
    if ((type(X) == SemanticPointer) & (type(Y) == SemanticPointer)):
        return (X**x) * (Y**y)
    else:
        return (SemanticPointer(data=X, algebra=alg)**x) * (SemanticPointer(
            data=Y, algebra=alg)**y)
def ssp_plane_basis(K):
    # Create the bases vectors X,Y as described in the paper with the wavevectors
    # (k_i = (u_i,v_i)) given in a matrix K. To get hexganal patterns use 3 K vectors 120 degs apart
    # To get mulit-scales/orientation, give many such sets of 3 K vectors
    # K is _ by 2
    d = K.shape[0]
    FX = np.ones((d * 2 + 1, ), dtype="complex")
    FX[0:d] = np.exp(1.j * K[:, 0])
    FX[-d:] = np.flip(np.conj(FX[0:d]))
    FX = np.fft.ifftshift(FX)
    FY = np.ones((d * 2 + 1, ), dtype="complex")
    FY[0:d] = np.exp(1.j * K[:, 1])
    FY[-d:] = np.flip(np.conj(FY[0:d]))
    FY = np.fft.ifftshift(FY)

    X = SemanticPointer(data=np.fft.ifft(FX), algebra=HrrAlgebra())
    Y = SemanticPointer(data=np.fft.ifft(FY), algebra=HrrAlgebra())
    return X, Y
Exemplo n.º 5
0
def test_circularconv_transforms(invert_a, invert_b, rng):
    """Test the circular convolution transforms"""
    dims = 100
    x = a = rng.randn(dims)
    y = b = rng.randn(dims)
    inv = HrrAlgebra().get_inversion_matrix(dims)
    if invert_a:
        a = np.dot(inv, a)
    if invert_b:
        b = np.dot(inv, b)
    z0 = HrrAlgebra().bind(a, b)

    tr_a = transform_in(dims, "A", invert_a)
    tr_b = transform_in(dims, "B", invert_b)
    tr_out = transform_out(dims)
    XY = np.dot(tr_a, x) * np.dot(tr_b, y)
    z1 = np.dot(tr_out, XY)

    assert np.allclose(z0, z1)
 def _get_algebra(cls, vocab, algebra):
     if algebra is None:
         if vocab is None:
             algebra = HrrAlgebra()
         else:
             algebra = vocab.algebra
     elif vocab is not None and vocab.algebra is not algebra:
         raise ValueError(
             "vocab and algebra argument are mutually exclusive")
     return algebra
 def __init__(self, X, Y, alg=HrrAlgebra(), radius=1):
     super().__init__()
     self.radius = radius
     if ((type(X) == SemanticPointer) & (type(Y) == SemanticPointer)):
         self.X = X.v
         self.Y = Y.v
         self.alg = X.algebra
     else:
         self.X = X
         self.Y = Y
         self.alg = alg
Exemplo n.º 8
0
    def __init__(self, env, d, X=None, Y=None):
        super().__init__(env)

        self.alg = HrrAlgebra()

        img_shape = env.observation_space['image'].shape
        self.img_shape = img_shape
        self.d = d
        self.X = X or make_good_unitary(d)
        self.Y = Y or make_good_unitary(d)

        colors = [x.upper() for x in list(COLOR_TO_IDX.keys())]
        vocab = spa.Vocabulary(d)
        vocab.add('NULL', np.zeros(d))
        vocab.populate(';'.join(colors))

        objects = [x.upper() for x in list(OBJECT_TO_IDX.keys())]
        vocab.populate(';'.join(objects))

        #states = [x.upper() for x in list(STATE_TO_IDX.keys())]
        #vocab.populate(';'.join(states))
        vocab.add('OPEN', self.alg.identity_element(d))
        vocab.populate('CLOSED;LOCKED')
        self.vocab = vocab

        obs_shape = (d, )

        self.observation_space.spaces["image"] = SSPSpace(
            basis=[self.X.v, self.Y.v],
            bounds=[[-1, 1], [-1, 1]],
            shape=(obs_shape[0], ))

        #xi = np.arange(0.5,img_shape[0],1)
        xi = np.arange(img_shape[0] - 0.5, 0, -1)
        yi = np.arange(img_shape[1] // 2, -img_shape[1] // 2, -1)
        xx, yy = np.meshgrid(xi, yi)
        basis = np.vstack([self.X.v, self.Y.v]).T
        positions = np.vstack([xx.reshape(-1), yy.reshape(-1)]).T
        S_ids = ssp_vectorized(basis, positions).T.real
        S_ids = S_ids.reshape(len(xi), len(yi), d)  #.swapaxes(0,1)
        self.S_list = S_ids
Exemplo n.º 9
0
class TestConfig(object):
    """Parameters affecting all Nengo SPA testes.

    These are essentially global variables used by py.test to modify aspects
    of the Nengo SPA tests. We collect them in this class to provide a mini
    namespace and to avoid using the ``global`` keyword.

    The values below are defaults. The functions in the remainder of this
    module modify these values accordingly.
    """

    algebras = [HrrAlgebra(), VtbAlgebra()]
Exemplo n.º 10
0
 def __init__(self,
              basis,
              bounds,
              shape=None,
              dtype=complex,
              alg=HrrAlgebra()):
     self.nbasis = len(basis)
     self.basis = basis
     self.dim = len(basis[0])
     self.bounds = bounds
     self.alg = alg
     self.seed()
Exemplo n.º 11
0
 def _get_algebra(cls, vocab, algebra):
     if algebra is None:
         if vocab is None:
             algebra = HrrAlgebra()
         else:
             algebra = vocab.algebra
     elif vocab is not None and vocab.algebra is not algebra:
         raise ValueError(
             "vocab and algebra argument are mutually exclusive")
     if not isinstance(algebra, AbstractAlgebra):
         raise ValidationError(
             "'algebra' must be an instance of AbstractAlgebra", "algebra",
             algebra)
     return algebra
Exemplo n.º 12
0
def test_neural_accuracy(Simulator, seed, rng, dims, neurons_per_product=128):
    a = rng.normal(scale=np.sqrt(1.0 / dims), size=dims)
    b = rng.normal(scale=np.sqrt(1.0 / dims), size=dims)
    a /= np.linalg.norm(a)
    b /= np.linalg.norm(b)
    result = HrrAlgebra().bind(a, b)

    model = nengo.Network(label="circular conv", seed=seed)
    model.config[nengo.Ensemble].neuron_type = nengo.LIFRate()
    with model:
        input_a = nengo.Node(a)
        input_b = nengo.Node(b)
        cconv = nengo_spa.networks.CircularConvolution(neurons_per_product,
                                                       dimensions=dims)
        nengo.Connection(input_a, cconv.input_a, synapse=None)
        nengo.Connection(input_b, cconv.input_b, synapse=None)
        res_p = nengo.Probe(cconv.output)
    with Simulator(model) as sim:
        sim.run(0.01)

    error = rms(result - sim.data[res_p][-1])

    assert error < 0.2
Exemplo n.º 13
0
def test_input_magnitude(Simulator, seed, rng, dims=16, magnitude=10):
    """Test to make sure the magnitude scaling works.

    Builds two different CircularConvolution networks, one with the correct
    magnitude and one with 1.0 as the input_magnitude.
    """
    neurons_per_product = 128

    a = rng.normal(scale=np.sqrt(1.0 / dims), size=dims) * magnitude
    b = rng.normal(scale=np.sqrt(1.0 / dims), size=dims) * magnitude
    result = HrrAlgebra().bind(a, b)

    model = nengo.Network(label="circular conv", seed=seed)
    model.config[nengo.Ensemble].neuron_type = nengo.LIFRate()
    with model:
        input_a = nengo.Node(a)
        input_b = nengo.Node(b)
        cconv = nengo_spa.networks.CircularConvolution(
            neurons_per_product, dimensions=dims, input_magnitude=magnitude)
        nengo.Connection(input_a, cconv.input_a, synapse=None)
        nengo.Connection(input_b, cconv.input_b, synapse=None)
        res_p = nengo.Probe(cconv.output)
        cconv_bad = nengo_spa.networks.CircularConvolution(
            neurons_per_product, dimensions=dims,
            input_magnitude=1)  # incorrect magnitude
        nengo.Connection(input_a, cconv_bad.input_a, synapse=None)
        nengo.Connection(input_b, cconv_bad.input_b, synapse=None)
        res_p_bad = nengo.Probe(cconv_bad.output)
    with Simulator(model) as sim:
        sim.run(0.01)

    error = rms(result - sim.data[res_p][-1]) / (magnitude**2)
    error_bad = rms(result - sim.data[res_p_bad][-1]) / (magnitude**2)

    assert error < 0.2
    assert error_bad > 0.1
Exemplo n.º 14
0
def test_invalid_algebra():
    gen = UnitLengthVectors(32)
    with pytest.raises(ValidationError, match="AbstractAlgebra"):
        SemanticPointer(next(gen), algebra=HrrAlgebra)
    SemanticPointer(next(gen), algebra=HrrAlgebra())
Exemplo n.º 15
0
class SSPWrapper(gym.core.ObservationWrapper):
    def __init__(self, env, d, X=None, Y=None):
        super().__init__(env)

        self.alg = HrrAlgebra()

        img_shape = env.observation_space['image'].shape
        self.img_shape = img_shape
        self.d = d
        self.X = X or make_good_unitary(d)
        self.Y = Y or make_good_unitary(d)

        colors = [x.upper() for x in list(COLOR_TO_IDX.keys())]
        vocab = spa.Vocabulary(d)
        vocab.add('NULL', np.zeros(d))
        vocab.populate(';'.join(colors))

        objects = [x.upper() for x in list(OBJECT_TO_IDX.keys())]
        vocab.populate(';'.join(objects))

        #states = [x.upper() for x in list(STATE_TO_IDX.keys())]
        #vocab.populate(';'.join(states))
        vocab.add('OPEN', self.alg.identity_element(d))
        vocab.populate('CLOSED;LOCKED')
        self.vocab = vocab

        obs_shape = (d, )

        self.observation_space.spaces["image"] = SSPSpace(
            basis=[self.X.v, self.Y.v],
            bounds=[[-1, 1], [-1, 1]],
            shape=(obs_shape[0], ))

        #xi = np.arange(0.5,img_shape[0],1)
        xi = np.arange(img_shape[0] - 0.5, 0, -1)
        yi = np.arange(img_shape[1] // 2, -img_shape[1] // 2, -1)
        xx, yy = np.meshgrid(xi, yi)
        basis = np.vstack([self.X.v, self.Y.v]).T
        positions = np.vstack([xx.reshape(-1), yy.reshape(-1)]).T
        S_ids = ssp_vectorized(basis, positions).T.real
        S_ids = S_ids.reshape(len(xi), len(yi), d)  #.swapaxes(0,1)
        self.S_list = S_ids

    def observation(self, obs):
        img = obs['image']

        M = spa.SemanticPointer(data=np.zeros(self.d))
        for i in range(img.shape[0]):
            for j in range(img.shape[1]):
                obj = img[i, j, 0]
                color = img[i, j, 1]
                state = img[i, j, 2]
                if obj not in [0, 1]:
                    S = spa.SemanticPointer(data=self.S_list[i, j, :])

                    M = M + (S * self.vocab[IDX_TO_OBJECT[obj].upper()] *
                             self.vocab[IDX_TO_COLOR[color].upper()] *
                             self.vocab[IDX_TO_STATE[state].upper()])
        #M = M.normalized()

        return {'mission': obs['mission'], 'image': M.v}
Exemplo n.º 16
0
def test_is_singleton():
    assert HrrAlgebra() is HrrAlgebra()