Exemplo n.º 1
0
def test_pes_learning_rate(Simulator, plt, seed):
    n = 50
    dt = 0.0005
    T = 1.0
    initial = 0.7
    desired = -0.9
    epsilon = 1e-3  # get to factor epsilon with T seconds

    # Get activity vector and initial decoders
    with Network(seed=seed) as model:
        x = nengo.Ensemble(n,
                           1,
                           seed=seed,
                           neuron_type=nengo.neurons.LIFRate())
        y = nengo.Node(size_in=1)
        conn = nengo.Connection(x, y, synapse=None)

    with Simulator(model, dt=dt) as sim:
        a = get_activities(sim.model, x, [initial])
        d = sim.data[conn].weights
        assert np.any(a > 0)

    # Use util function to calculate learning_rate
    init_error = float(desired - np.dot(d, a))
    learning_rate, gamma = pes_learning_rate(epsilon / abs(init_error), a, T,
                                             dt)

    # Build model with no filtering on any connections
    with model:
        stim = nengo.Node(output=initial)
        ystar = nengo.Node(output=desired)

        conn.learning_rule_type = nengo.PES(pre_tau=1e-15,
                                            learning_rate=learning_rate)

        nengo.Connection(stim, x, synapse=None)
        nengo.Connection(ystar, conn.learning_rule, synapse=0, transform=-1)
        nengo.Connection(y, conn.learning_rule, synapse=0)

        p = nengo.Probe(y, synapse=None)
        decoders = nengo.Probe(conn, 'weights', synapse=None)

    with Simulator(model, dt=dt) as sim:
        sim.run(T)

    # Check that the final error is exactly epsilon
    assert np.allclose(abs(desired - sim.data[p][-1]), epsilon)

    # Check that all of the errors are given exactly by gamma**k
    k = np.arange(len(sim.trange()))
    error = init_error * gamma**k
    assert np.allclose(sim.data[p].flatten(), desired - error)

    # Check that all of the decoders are equal to their analytical solution
    dk = d.T + init_error * a.T[:, None] * (1 - gamma**k) / np.dot(a, a.T)
    assert np.allclose(dk, np.squeeze(sim.data[decoders].T))

    plt.figure()
    plt.plot(sim.trange(), sim.data[p], lw=5, alpha=0.5)
    plt.plot(sim.trange(), desired - error, linestyle='--', lw=5, alpha=0.5)
Exemplo n.º 2
0
def _test_lif(Simulator, seed, neuron_type, u, dt, n=500, t=2.0):
    with Network(seed=seed) as model:
        stim = nengo.Node(u)
        x = nengo.Ensemble(n, 1, neuron_type=neuron_type)
        nengo.Connection(stim, x, synapse=None)
        p = nengo.Probe(x.neurons)

    with Simulator(model, dt=dt) as sim:
        sim.run(t)

    expected = get_activities(sim.model, x, [u]) * t
    actual = (sim.data[p] > 0).sum(axis=0)

    return rmse(actual, expected, axis=0)
Exemplo n.º 3
0
def go(freq,
       max_rates,
       n_neurons=2500,
       n_steps=10000,
       dt=1e-4,
       sample_every=1e-4,
       tau=0.02,
       seed=0):

    with nengo.Network(seed=seed) as model:
        u = nengo.Node(output=lambda t: np.sin(freq * 2 * np.pi * t))

        x = nengo.Ensemble(n_neurons,
                           1,
                           max_rates=max_rates,
                           seed=seed,
                           neuron_type=nengo.LIF())
        x_rate = nengo.Ensemble(n_neurons,
                                1,
                                max_rates=max_rates,
                                seed=seed,
                                neuron_type=nengo.LIFRate())

        nengo.Connection(u, x, synapse=None)
        nengo.Connection(u, x_rate, synapse=None)

        p_u = nengo.Probe(u, synapse=None, sample_every=sample_every)
        p_v = nengo.Probe(x.neurons,
                          'voltage',
                          synapse=None,
                          sample_every=sample_every)
        p_j = nengo.Probe(x.neurons,
                          'input',
                          synapse=None,
                          sample_every=sample_every)
        p_r = nengo.Probe(x.neurons,
                          'refractory_time',
                          synapse=None,
                          sample_every=sample_every)

        p_ideal = nengo.Probe(x_rate, synapse=tau, sample_every=sample_every)
        p_actual = nengo.Probe(x, synapse=tau, sample_every=sample_every)

    with nengo.Simulator(model, dt=dt) as sim:
        init_lif(sim, x, x0=0)
        sim.run_steps(n_steps)

    A = get_activities(sim.model, x, sim.data[p_u])
    assert A.shape == sim.data[p_v].shape == sim.data[p_j].shape

    a_flatten = A.flatten()
    sl = a_flatten > 0
    v = sim.data[p_v].flatten()[sl]
    j = sim.data[p_j].flatten()[sl]
    a = a_flatten[sl]
    r = (sim.data[p_r].flatten()[sl] - dt).clip(0)

    s = (x.neuron_type.tau_rc * np.log1p((1 - v) / (j - 1)) + r) * a

    actual = sim.data[p_actual]
    ideal = sim.data[p_ideal]
    assert ideal.shape == actual.shape

    return (
        kstest(s, 'uniform'),
        rmse(actual, ideal),
    )
Exemplo n.º 4
0
def test_init_lif(Simulator, seed, x0):
    u = 0 if x0 is None else x0
    n_neurons = 1000
    t = 2.0
    ens_kwargs = dict(
        n_neurons=n_neurons,
        dimensions=1,
        max_rates=nengo.dists.Uniform(10, 100),
        seed=seed,
    )

    with nengo.Network(seed=seed) as model:
        stim = nengo.Node(u)

        zero = nengo.Ensemble(**ens_kwargs)
        init = nengo.Ensemble(**ens_kwargs)

        nengo.Connection(stim, zero, synapse=None)
        nengo.Connection(stim, init, synapse=None)

        p_zero_spikes = nengo.Probe(zero.neurons, 'spikes', synapse=None)
        p_zero_v = nengo.Probe(zero.neurons, 'voltage', synapse=None)

        p_init_spikes = nengo.Probe(init.neurons, 'spikes', synapse=None)
        p_init_v = nengo.Probe(init.neurons, 'voltage', synapse=None)

    with Simulator(model, seed=seed) as sim:
        init_lif(sim, init, x0=x0)
        sim.run(t)

    # same tuning curves
    a = get_activities(sim.model, zero, [u])
    assert np.allclose(a, get_activities(sim.model, init, [u]))

    # calculate difference between actual spike counts and ideal
    count_zero = np.count_nonzero(sim.data[p_zero_spikes], axis=0)
    count_init = np.count_nonzero(sim.data[p_init_spikes], axis=0)
    e_zero = count_zero - a * t
    e_init = count_init - a * t

    # initialized error is close to zero, better than uninitialized,
    # with std. dev. close to the uninitialized
    assert np.abs(np.mean(e_init)) < 0.05
    assert np.abs(np.mean(e_zero)) > 0.1
    assert np.abs(np.std(e_init) - np.std(e_zero)) < 0.05

    # subthreshold neurons are the same between populations
    subthresh = np.all(sim.data[p_init_spikes] == 0, axis=0)
    assert np.allclose(subthresh, np.all(sim.data[p_zero_spikes] == 0, axis=0))
    assert 0 < np.count_nonzero(subthresh) < n_neurons
    is_active = ~subthresh

    # uninitialized always under-counts (unless subthreshold)
    # the other exception is when a neuron spikes at the very end
    # since the simulation does not start in its refractory
    assert np.allclose(e_zero[subthresh], 0)
    very_end = sim.trange() >= t - init.neuron_type.tau_ref
    exception = np.any(sim.data[p_zero_spikes][very_end, :] > 0, axis=0)
    # no more than 10% should be exceptions (heuristic)
    assert np.count_nonzero(exception) < 0.1 * n_neurons
    assert np.all(e_zero[is_active & (~exception)] < 0)

    # uninitialized voltages start at 0 (plus first time-step)
    assert np.all(sim.data[p_zero_v][0, :] < 0.2)

    # initialized sub-threshold voltages remain constant
    # (steady-state input)
    assert np.allclose(sim.data[p_init_v][0, subthresh],
                       sim.data[p_init_v][-1, subthresh])

    def uniformity_test(spikes):
        # test uniformity of ISIs
        # returns (r, d, p) where r is the [0, 1) relative
        # position of the first spike-time within the ISI
        # d is the KS D-statistic which is the absolute max
        # distance from the uniform distribution, and p
        # is the p-value of this statistic
        t_spike = sim.trange()[[
            np.where(s > 0)[0][0] for s in spikes[:, is_active].T
        ]]
        assert t_spike.shape == (np.count_nonzero(is_active), )
        isi_location = (t_spike - sim.dt) * a[is_active]
        return (isi_location, ) + kstest(isi_location, 'uniform')

    r, d, p = uniformity_test(sim.data[p_init_spikes])
    assert np.all(r >= 0)
    assert np.all(r < 1)
    assert d < 0.1

    r, d, p = uniformity_test(sim.data[p_zero_spikes])
    assert np.all(r >= 0.7)  # heuristic
    assert np.all(r < 1)
    assert d > 0.7
    assert p < 1e-5
Exemplo n.º 5
0
def _test_RLS_network(Simulator, seed, dims, lrate, neuron_type, tau, T_train,
                      T_test, tols):
    # Input is a scalar sinusoid with given frequency
    n_neurons = 100
    freq = 5

    # Learn a linear transformation within T_train seconds
    transform = np.random.RandomState(seed=seed).randn(dims, 1)
    lr = RLS(learning_rate=lrate, pre_synapse=tau)

    with Network(seed=seed) as model:
        u = nengo.Node(output=lambda t: np.sin(freq * 2 * np.pi * t))
        x = nengo.Ensemble(n_neurons, 1, neuron_type=neuron_type)
        y = nengo.Node(size_in=dims)
        y_on = nengo.Node(size_in=dims)
        y_off = nengo.Node(size_in=dims)

        e = nengo.Node(size_in=dims,
                       output=lambda t, e: e
                       if t < T_train else np.zeros_like(e))

        nengo.Connection(u, y, synapse=None, transform=transform)
        nengo.Connection(u, x, synapse=None)
        conn_on = nengo.Connection(x,
                                   y_on,
                                   synapse=None,
                                   learning_rule_type=lr,
                                   function=lambda _: np.zeros(dims))
        nengo.Connection(y, e, synapse=None, transform=-1)
        nengo.Connection(y_on, e, synapse=None)
        nengo.Connection(e, conn_on.learning_rule, synapse=tau)

        nengo.Connection(x, y_off, synapse=None, transform=transform)

        p_y = nengo.Probe(y, synapse=tau)
        p_y_on = nengo.Probe(y_on, synapse=tau)
        p_y_off = nengo.Probe(y_off, synapse=tau)
        p_inv_gamma = nengo.Probe(conn_on.learning_rule, 'inv_gamma')

    with Simulator(model) as sim:
        sim.run(T_train + T_test)

    # Check _descstr
    ops = [op for op in sim.model.operators if isinstance(op, SimRLS)]
    assert len(ops) == 1
    assert str(ops[0]).startswith('SimRLS')

    test = sim.trange() >= T_train

    on_versus_off = nrmse(sim.data[p_y_on][test],
                          target=sim.data[p_y_off][test])

    on_versus_ideal = nrmse(sim.data[p_y_on][test], target=sim.data[p_y][test])

    off_versus_ideal = nrmse(sim.data[p_y_off][test],
                             target=sim.data[p_y][test])

    A = get_activities(sim.model, x, np.linspace(-1, 1, 1000)[:, None])
    gamma_off = A.T.dot(A) + np.eye(n_neurons) / lr.learning_rate
    gamma_on = inv(sim.data[p_inv_gamma][-1])

    gamma_off /= np.linalg.norm(gamma_off)
    gamma_on /= np.linalg.norm(gamma_on)
    gamma_diff = nrmse(gamma_on, target=gamma_off)

    assert on_versus_off < tols[0]
    assert on_versus_ideal < tols[1]
    assert off_versus_ideal < tols[2]
    assert gamma_diff < tols[3]