Exemplo n.º 1
0
    def setup_irregularlysampledsignals(self):
        irsigname11 = 'irregularsignal 1 1'
        irsigname12 = 'irregularsignal 1 2'
        irsigname21 = 'irregularsignal 2 1'
        irsigname22 = 'irregularsignal 2 2'

        irsigdata11 = np.arange(0, 10) * pq.mA
        irsigdata12 = np.arange(10, 20) * pq.mA
        irsigdata21 = np.arange(20, 30) * pq.A
        irsigdata22 = np.arange(30, 40) * pq.A

        irsigtimes11 = np.arange(0, 10) * pq.ms
        irsigtimes12 = np.arange(10, 20) * pq.ms
        irsigtimes21 = np.arange(20, 30) * pq.s
        irsigtimes22 = np.arange(30, 40) * pq.s

        self.irsignames1 = [irsigname11, irsigname12]
        self.irsignames2 = [irsigname21, irsigname22]
        self.irsignames = [irsigname11, irsigname12, irsigname21, irsigname22]

        irsig11 = IrregularlySampledSignal(irsigtimes11, irsigdata11,
                                           name=irsigname11)
        irsig12 = IrregularlySampledSignal(irsigtimes12, irsigdata12,
                                           name=irsigname12)
        irsig21 = IrregularlySampledSignal(irsigtimes21, irsigdata21,
                                           name=irsigname21)
        irsig22 = IrregularlySampledSignal(irsigtimes22, irsigdata22,
                                           name=irsigname22)

        self.irsig1 = [irsig11, irsig12]
        self.irsig2 = [irsig21, irsig22]
        self.irsig = [irsig11, irsig12, irsig21, irsig22]
Exemplo n.º 2
0
 def _read_irregularlysampledsignal(self, node, parent):
     attributes = self._get_standard_attributes(node)
     signal = IrregularlySampledSignal(times=self._get_quantity(node["times"]),
                                       signal=self._get_quantity(node["signal"]),
                                       **attributes)
     signal.segment = parent
     return signal
Exemplo n.º 3
0
 def _read_irregularlysampledsignal(self, node, parent):
     attributes = self._get_standard_attributes(node)
     signal = IrregularlySampledSignal(times=self._get_quantity(node["times"]),
                                       signal=self._get_quantity(node["signal"]),
                                       **attributes)
     signal.segment = parent
     return signal
Exemplo n.º 4
0
    def create_irregularlysampledsignal(self, parent=None, name='IrregularlySampledSignal'):
        signal = IrregularlySampledSignal([1.0, 2.3, 6.4] * pq.ms,
                                          [[1, 4], [2, 1], [0, -5]] * pq.mV)

        signal.segment = parent
        self._assign_basic_attributes(signal, name=name)

        return signal
Exemplo n.º 5
0
 def _read_irregularlysampledsignal(self, node, parent):
     attributes = self._get_standard_attributes(node)
     signal = IrregularlySampledSignal(times=self._get_quantity(node["times"]),
                                       signal=self._get_quantity(node["signal"]),
                                       **attributes)
     signal.segment = parent
     if self._lazy:
         signal.lazy_shape = node["signal"].shape
         if len(signal.lazy_shape) == 1:
             signal.lazy_shape = (signal.lazy_shape[0], 1)
     return signal
Exemplo n.º 6
0
def _read_signal_file(
        filepaths: List[str],
        signal_unit: Quantity = None) -> IrregularlySampledSignal:
    # things are a bit complicated here as the signal is not necessarily covering the whole experiment!
    try:
        # get the continous signal file
        signal_file = [
            file for file in filepaths
            if "continuous" in os.path.basename(file).lower()
        ][0]

        times = []
        signal = []

        # open the file for reading
        with open(signal_file, "r") as file:

            # and create a reader
            reader = csv.reader(file, delimiter=",")
            # this try/catch handles the exception that is raised by "next" if the reader reached the file ending
            try:
                while True:
                    # read time and signal rows
                    time_row = np.array([float(val) for val in next(reader)])
                    signal_row = np.array([float(val) for val in next(reader)])
                    assert len(time_row) == len(signal_row)

                    times.append(time_row)
                    signal.append(signal_row)
            except StopIteration:
                pass

        # concatenate our list of arrays
        times = np.concatenate(times) * second
        signal = np.concatenate(signal)
        assert len(times) == len(signal)

        if not signal_unit is None:
            signal = Quantity(signal, signal_unit)
        else:
            signal = Quantity(signal, "dimensionless")

        result = IrregularlySampledSignal(times=times,
                                          signal=signal,
                                          name="Irregularly Sampled Signal",
                                          file_origin=signal_file)
        channel_id = f"{TypeID.RAW_DATA.value}.0"
        result.annotate(id=channel_id, type_id=TypeID.RAW_DATA.value)
        return result

    # something might go wrong as we perform some IO operations here
    except Exception as ex:
        traceback.print_exc()
Exemplo n.º 7
0
 def _read_irregularlysampledsignal(self, node, parent):
     attributes = self._get_standard_attributes(node)
     signal = IrregularlySampledSignal(
         times=self._get_quantity(node["times"]),
         signal=self._get_quantity(node["signal"]),
         **attributes)
     signal.segment = parent
     if self._lazy:
         signal.lazy_shape = node["signal"].shape
         if len(signal.lazy_shape) == 1:
             signal.lazy_shape = (signal.lazy_shape[0], 1)
     return signal
Exemplo n.º 8
0
    def _get_tracking(self, channel, conversion):

        if channel is not None:
            eva = Event()
            ttls = self._kwe['event_types']['TTL']['events'][
                'time_samples'].value
            event_channels = self._kwe['event_types']['TTL']['events'][
                'user_data']['event_channels'].value
            event_id = self._kwe['event_types']['TTL']['events']['user_data'][
                'eventID'].value
            eva.times = (ttls[(event_channels == channel) & (event_id == 1)] /
                         self._attrs['kwe']['sample_rate']) * pq.s
            eva.name = 'TrackingTTL'

        posdata = self._kwe['event_types']['Binary_messages']['events'][
            'user_data']['Data'].value
        node_id = self._kwe['event_types']['Binary_messages']['events'][
            'user_data']['nodeID'].value
        time_samples = self._kwe['event_types']['Binary_messages']['events'][
            'time_samples'].value
        sigs = []
        for node in self._nodes['OSC Port']:
            irsig = IrregularlySampledSignal(
                signal=posdata[node_id == int(node['NodeId'])] * conversion *
                pq.m,
                times=(time_samples[node_id == int(node['NodeId'])] /
                       self._attrs['kwe']['sample_rate']) * pq.s,
                name=node['address'])
            sigs += [irsig]
        if channel is not None:
            return eva, sigs
        else:
            return sigs
Exemplo n.º 9
0
    def create_all_annotated(cls):
        times = cls.rquant(1, pq.s)
        signal = cls.rquant(1, pq.V)
        blk = Block()
        blk.annotate(**cls.rdict(3))
        cls.populate_dates(blk)

        seg = Segment()
        seg.annotate(**cls.rdict(4))
        cls.populate_dates(seg)
        blk.segments.append(seg)

        asig = AnalogSignal(signal=signal, sampling_rate=pq.Hz)
        asig.annotate(**cls.rdict(2))
        seg.analogsignals.append(asig)

        isig = IrregularlySampledSignal(times=times,
                                        signal=signal,
                                        time_units=pq.s)
        isig.annotate(**cls.rdict(2))
        seg.irregularlysampledsignals.append(isig)

        epoch = Epoch(times=times, durations=times)
        epoch.annotate(**cls.rdict(4))
        seg.epochs.append(epoch)

        event = Event(times=times)
        event.annotate(**cls.rdict(4))
        seg.events.append(event)

        spiketrain = SpikeTrain(times=times, t_stop=pq.s, units=pq.s)
        d = cls.rdict(6)
        d["quantity"] = pq.Quantity(10, "mV")
        d["qarray"] = pq.Quantity(range(10), "mA")
        spiketrain.annotate(**d)
        seg.spiketrains.append(spiketrain)

        chx = ChannelIndex(name="achx", index=[1, 2], channel_ids=[0, 10])
        chx.annotate(**cls.rdict(5))
        blk.channel_indexes.append(chx)

        unit = Unit()
        unit.annotate(**cls.rdict(2))
        chx.units.append(unit)

        return blk
Exemplo n.º 10
0
    def test_signals_compound_units(self):
        block = Block()
        seg = Segment()
        block.segments.append(seg)

        units = pq.CompoundUnit("1/30000*V")
        srate = pq.Quantity(10, pq.CompoundUnit("1.0/10 * Hz"))
        asig = AnalogSignal(signal=self.rquant((10, 3), units),
                            sampling_rate=srate)
        seg.analogsignals.append(asig)

        self.write_and_compare([block])

        anotherblock = Block("ir signal block")
        seg = Segment("ir signal seg")
        anotherblock.segments.append(seg)
        irsig = IrregularlySampledSignal(signal=np.random.random((20, 3)),
                                         times=self.rquant(
                                             20, pq.CompoundUnit("0.1 * ms"),
                                             True),
                                         units=pq.CompoundUnit("10 * V / s"))
        seg.irregularlysampledsignals.append(irsig)
        self.write_and_compare([block, anotherblock])

        block.segments[0].analogsignals.append(
            AnalogSignal(signal=[10.0, 1.0, 3.0],
                         units=pq.S,
                         sampling_period=pq.Quantity(3, "s"),
                         dtype=np.double,
                         name="signal42",
                         description="this is an analogsignal",
                         t_start=45 * pq.CompoundUnit("3.14 * s")), )
        self.write_and_compare([block, anotherblock])

        times = self.rquant(10, pq.CompoundUnit("3 * year"), True)
        block.segments[0].irregularlysampledsignals.append(
            IrregularlySampledSignal(times=times,
                                     signal=np.random.random((10, 3)),
                                     units="mV",
                                     dtype=np.float,
                                     name="some sort of signal",
                                     description="the signal is described"))

        self.write_and_compare([block, anotherblock])
Exemplo n.º 11
0
    def create_all_annotated(cls):
        times = cls.rquant(1, pq.s)
        signal = cls.rquant(1, pq.V)
        blk = Block()
        blk.annotate(**cls.rdict(3))

        seg = Segment()
        seg.annotate(**cls.rdict(4))
        blk.segments.append(seg)

        asig = AnalogSignal(signal=signal, sampling_rate=pq.Hz)
        asig.annotate(**cls.rdict(2))
        seg.analogsignals.append(asig)

        isig = IrregularlySampledSignal(times=times, signal=signal,
                                        time_units=pq.s)
        isig.annotate(**cls.rdict(2))
        seg.irregularlysampledsignals.append(isig)

        epoch = Epoch(times=times, durations=times)
        epoch.annotate(**cls.rdict(4))
        seg.epochs.append(epoch)

        event = Event(times=times)
        event.annotate(**cls.rdict(4))
        seg.events.append(event)

        spiketrain = SpikeTrain(times=times, t_stop=pq.s, units=pq.s)
        d = cls.rdict(6)
        d["quantity"] = pq.Quantity(10, "mV")
        d["qarray"] = pq.Quantity(range(10), "mA")
        spiketrain.annotate(**d)
        seg.spiketrains.append(spiketrain)

        chx = ChannelIndex(name="achx", index=[1, 2], channel_ids=[0, 10])
        chx.annotate(**cls.rdict(5))
        blk.channel_indexes.append(chx)

        unit = Unit()
        unit.annotate(**cls.rdict(2))
        chx.units.append(unit)

        return blk
Exemplo n.º 12
0
    def read_irregularlysampledsignal(fh, block_id, array_id):
        nix_block = fh.handle.blocks[block_id]
        nix_da = nix_block.data_arrays[array_id]

        params = {
            'name': Reader.Help.get_obj_neo_name(nix_da),
            'signal': nix_da[:],  # TODO think about lazy data loading
            'units': nix_da.unit,
            'times': nix_da.dimensions[0].ticks,
            'time_units': nix_da.dimensions[0].unit,
            'dtype': nix_da.dtype,
        }

        signal = IrregularlySampledSignal(**params)

        for key, value in Reader.Help.read_attributes(nix_da.metadata, 'irregularlysampledsignal').items():
            setattr(signal, key, value)

        signal.annotations = Reader.Help.read_annotations(nix_da.metadata, 'irregularlysampledsignal')

        return signal
Exemplo n.º 13
0
    def test_signals_write(self):
        block = Block()
        seg = Segment()
        block.segments.append(seg)

        asig = AnalogSignal(signal=self.rquant((10, 3), pq.mV),
                            sampling_rate=pq.Quantity(10, "Hz"))
        seg.analogsignals.append(asig)
        self.write_and_compare([block])

        anotherblock = Block("ir signal block")
        seg = Segment("ir signal seg")
        anotherblock.segments.append(seg)
        irsig = IrregularlySampledSignal(
            signal=np.random.random((20, 3)),
            times=self.rquant(20, pq.ms, True),
            units=pq.A
        )
        seg.irregularlysampledsignals.append(irsig)
        self.write_and_compare([block, anotherblock])

        block.segments[0].analogsignals.append(
            AnalogSignal(signal=[10.0, 1.0, 3.0], units=pq.S,
                         sampling_period=pq.Quantity(3, "s"),
                         dtype=np.double, name="signal42",
                         description="this is an analogsignal",
                         t_start=45 * pq.ms),
        )
        self.write_and_compare([block, anotherblock])

        block.segments[0].irregularlysampledsignals.append(
            IrregularlySampledSignal(times=np.random.random(10),
                                     signal=np.random.random((10, 3)),
                                     units="mV", time_units="s",
                                     dtype=np.float,
                                     name="some sort of signal",
                                     description="the signal is described")
        )
        self.write_and_compare([block, anotherblock])
Exemplo n.º 14
0
    def test_anonymous_objects_write(self):
        nblocks = 2
        nsegs = 2
        nanasig = 4
        nirrseg = 2
        nepochs = 3
        nevents = 4
        nspiketrains = 3
        nchx = 5
        nunits = 10

        times = self.rquant(1, pq.s)
        signal = self.rquant(1, pq.V)
        blocks = []
        for blkidx in range(nblocks):
            blk = Block()
            blocks.append(blk)
            for segidx in range(nsegs):
                seg = Segment()
                blk.segments.append(seg)
                for anaidx in range(nanasig):
                    seg.analogsignals.append(AnalogSignal(signal=signal,
                                                          sampling_rate=pq.Hz))
                for irridx in range(nirrseg):
                    seg.irregularlysampledsignals.append(
                        IrregularlySampledSignal(times=times,
                                                 signal=signal,
                                                 time_units=pq.s)
                    )
                for epidx in range(nepochs):
                    seg.epochs.append(Epoch(times=times, durations=times))
                for evidx in range(nevents):
                    seg.events.append(Event(times=times))
                for stidx in range(nspiketrains):
                    seg.spiketrains.append(SpikeTrain(times=times,
                                                      t_stop=times[-1]+pq.s,
                                                      units=pq.s))
            for chidx in range(nchx):
                chx = ChannelIndex(name="chx{}".format(chidx),
                                   index=[1, 2],
                                   channel_ids=[11, 22])
                blk.channel_indexes.append(chx)
                for unidx in range(nunits):
                    unit = Unit()
                    chx.units.append(unit)
        self.writer.write_all_blocks(blocks)
        self.compare_blocks(blocks, self.reader.blocks)
Exemplo n.º 15
0
    def test_multiref_write(self):
        blk = Block("blk1")
        signal = AnalogSignal(name="sig1",
                              signal=[0, 1, 2],
                              units="mV",
                              sampling_period=pq.Quantity(1, "ms"))
        othersignal = IrregularlySampledSignal(name="i1",
                                               signal=[0, 0, 0],
                                               units="mV",
                                               times=[1, 2, 3],
                                               time_units="ms")
        event = Event(name="Evee", times=[0.3, 0.42], units="year")
        epoch = Epoch(name="epoche",
                      times=[0.1, 0.2] * pq.min,
                      durations=[0.5, 0.5] * pq.min)
        st = SpikeTrain(name="the train of spikes",
                        times=[0.1, 0.2, 10.3],
                        t_stop=11,
                        units="us")

        for idx in range(3):
            segname = "seg" + str(idx)
            seg = Segment(segname)
            blk.segments.append(seg)
            seg.analogsignals.append(signal)
            seg.irregularlysampledsignals.append(othersignal)
            seg.events.append(event)
            seg.epochs.append(epoch)
            seg.spiketrains.append(st)

        chidx = ChannelIndex([10, 20, 29])
        seg = blk.segments[0]
        st = SpikeTrain(name="choochoo",
                        times=[10, 11, 80],
                        t_stop=1000,
                        units="s")
        seg.spiketrains.append(st)
        blk.channel_indexes.append(chidx)
        for idx in range(6):
            unit = Unit("unit" + str(idx))
            chidx.units.append(unit)
            unit.spiketrains.append(st)

        self.writer.write_block(blk)
        self.compare_blocks([blk], self.reader.blocks)
Exemplo n.º 16
0
def random_irreg_signal(name=None, **annotations):
    n_channels = random.randint(1, 7)
    sig_length = random.randint(20, 200)
    if len(annotations) == 0:
        annotations = random_annotations(5)
    mean_firing_rate = np.random.uniform(0.1, 10) * pq.kHz
    times = np.cumsum(np.random.uniform(1.0 / mean_firing_rate, size=(sig_length,))) * pq.ms
    obj = IrregularlySampledSignal(
        times,
        np.random.uniform(size=(sig_length, n_channels)),
        units=random.choice(("mV", "nA")),
        name=name or random_string(),
        file_origin=random_string(),
        description=random_string(100),
        array_annotations=None,   # todo
        **annotations
    )
    return obj
Exemplo n.º 17
0
    def test_no_segment_write(self):
        # Tests storing AnalogSignal, IrregularlySampledSignal, and SpikeTrain
        # objects in the secondary (ChannelIndex) substructure without them
        # being attached to a Segment.
        blk = Block("segmentless block")
        signal = AnalogSignal(name="sig1",
                              signal=[0, 1, 2],
                              units="mV",
                              sampling_period=pq.Quantity(1, "ms"))
        othersignal = IrregularlySampledSignal(name="i1",
                                               signal=[0, 0, 0],
                                               units="mV",
                                               times=[1, 2, 3],
                                               time_units="ms")
        sta = SpikeTrain(name="the train of spikes",
                         times=[0.1, 0.2, 10.3],
                         t_stop=11,
                         units="us")
        stb = SpikeTrain(name="the train of spikes b",
                         times=[1.1, 2.2, 10.1],
                         t_stop=100,
                         units="ms")

        chidx = ChannelIndex([8, 13, 21])
        blk.channel_indexes.append(chidx)
        chidx.analogsignals.append(signal)
        chidx.irregularlysampledsignals.append(othersignal)

        unit = Unit()
        chidx.units.append(unit)
        unit.spiketrains.extend([sta, stb])
        self.writer.write_block(blk)

        self.compare_blocks([blk], self.reader.blocks)

        self.writer.close()
        reader = NixIO(self.filename, "ro")
        blk = reader.read_block(neoname="segmentless block")
        chx = blk.channel_indexes[0]
        self.assertEqual(len(chx.analogsignals), 1)
        self.assertEqual(len(chx.irregularlysampledsignals), 1)
        self.assertEqual(len(chx.units[0].spiketrains), 2)
Exemplo n.º 18
0
    def load(self, time_slice=None, strict_slicing=True):
        """
        Load AnalogSignalProxy args:
            :param time_slice: None or tuple of the time slice expressed with quantities.
                            None is the entire signal.
            :param strict_slicing: True by default.
                Control if an error is raised or not when one of the time_slice members
                (t_start or t_stop) is outside the real time range of the segment.
        """
        i_start, i_stop, sig_t_start = None, None, self.t_start
        if time_slice:
            if self.sampling_rate is None:
                i_start, i_stop = np.searchsorted(self._timeseries.timestamps,
                                                  time_slice)
            else:
                i_start, i_stop, sig_t_start = self._time_slice_indices(
                    time_slice, strict_slicing=strict_slicing)
        signal = self._timeseries.data[i_start:i_stop]
        if self.sampling_rate is None:
            return IrregularlySampledSignal(
                self._timeseries.timestamps[i_start:i_stop] * pq.s,
                signal,
                units=self.units,
                t_start=sig_t_start,
                sampling_rate=self.sampling_rate,
                name=self.name,
                description=self.description,
                array_annotations=None,
                **self.annotations
            )  # todo: timeseries.control / control_description

        else:
            return AnalogSignal(
                signal,
                units=self.units,
                t_start=sig_t_start,
                sampling_rate=self.sampling_rate,
                name=self.name,
                description=self.description,
                array_annotations=None,
                **self.annotations
            )  # todo: timeseries.control / control_description
Exemplo n.º 19
0
 def read_tracking(self, path):
     """
     Read tracking data_end
     """
     if (len(path) == 0):
         pos_group = self._processing["Position"]
     else:
         pos_group = self._processing[path]["Position"]
     irr_signals = []
     for key in pos_group:
         spot_group = pos_group[key]
         times = spot_group["timestamps"]
         coords = spot_group["data"]
         irr_signal = IrregularlySampledSignal(
             name=pos_group[key].name,
             signal=coords.data,
             times=times.data,
             units=coords.attrs["unit"],
             time_units=times.attrs["unit"])
         irr_signals.append(irr_signal)
     return irr_signals
Exemplo n.º 20
0
    def test__issue_285(self):
        # Spiketrain
        train = SpikeTrain([3, 4, 5] * pq.s, t_stop=10.0)
        unit = Unit()
        train.unit = unit
        unit.spiketrains.append(train)

        epoch = Epoch(np.array([0, 10, 20]),
                      np.array([2, 2, 2]),
                      np.array(["a", "b", "c"]),
                      units="ms")

        blk = Block()
        seg = Segment()
        seg.spiketrains.append(train)
        seg.epochs.append(epoch)
        epoch.segment = seg
        blk.segments.append(seg)

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.spiketrains[0].unit, Unit)
        self.assertIsInstance(r_seg.epochs[0], Epoch)
        os.remove('blk.pkl')

        # Epoch
        epoch = Epoch(times=np.arange(0, 30, 10) * pq.s,
                      durations=[10, 5, 7] * pq.ms,
                      labels=np.array(['btn0', 'btn1', 'btn2'], dtype='U'))
        epoch.segment = Segment()
        blk = Block()
        seg = Segment()
        seg.epochs.append(epoch)
        blk.segments.append(seg)

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.epochs[0].segment, Segment)
        os.remove('blk.pkl')

        # Event
        event = Event(np.arange(0, 30, 10) * pq.s,
                      labels=np.array(['trig0', 'trig1', 'trig2'], dtype='U'))
        event.segment = Segment()

        blk = Block()
        seg = Segment()
        seg.events.append(event)
        blk.segments.append(seg)

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.events[0].segment, Segment)
        os.remove('blk.pkl')

        # IrregularlySampledSignal
        signal = IrregularlySampledSignal([0.0, 1.23, 6.78], [1, 2, 3],
                                          units='mV',
                                          time_units='ms')
        signal.segment = Segment()

        blk = Block()
        seg = Segment()
        seg.irregularlysampledsignals.append(signal)
        blk.segments.append(seg)
        blk.segments[0].block = blk

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.irregularlysampledsignals[0].segment,
                              Segment)
        os.remove('blk.pkl')
Exemplo n.º 21
0
    def test_roundtrip(self):

        annotations = {"session_start_time": datetime.now()}
        # Define Neo blocks
        bl0 = Block(name='First block', **annotations)
        bl1 = Block(name='Second block', **annotations)
        bl2 = Block(name='Third block', **annotations)
        original_blocks = [bl0, bl1, bl2]

        num_seg = 4  # number of segments
        num_chan = 3  # number of channels

        for blk in original_blocks:

            for ind in range(num_seg):  # number of Segments
                seg = Segment(index=ind)
                seg.block = blk
                blk.segments.append(seg)

            for seg in blk.segments:  # AnalogSignal objects

                # 3 Neo AnalogSignals
                a = AnalogSignal(np.random.randn(44, num_chan) * pq.nA,
                                 sampling_rate=10 * pq.kHz,
                                 t_start=50 * pq.ms)
                b = AnalogSignal(np.random.randn(64, num_chan) * pq.mV,
                                 sampling_rate=8 * pq.kHz,
                                 t_start=40 * pq.ms)
                c = AnalogSignal(np.random.randn(33, num_chan) * pq.uA,
                                 sampling_rate=10 * pq.kHz,
                                 t_start=120 * pq.ms)

                # 2 Neo IrregularlySampledSignals
                d = IrregularlySampledSignal(
                    np.arange(7.0) * pq.ms,
                    np.random.randn(7, num_chan) * pq.mV)

                # 2 Neo SpikeTrains
                train = SpikeTrain(times=[1, 2, 3] * pq.s,
                                   t_start=1.0,
                                   t_stop=10.0)
                train2 = SpikeTrain(times=[4, 5, 6] * pq.s, t_stop=10.0)
                # todo: add waveforms

                # 1 Neo Event
                evt = Event(times=np.arange(0, 30, 10) * pq.ms,
                            labels=np.array(['ev0', 'ev1', 'ev2']))

                # 2 Neo Epochs
                epc = Epoch(times=np.arange(0, 30, 10) * pq.s,
                            durations=[10, 5, 7] * pq.ms,
                            labels=np.array(['btn0', 'btn1', 'btn2']))

                epc2 = Epoch(times=np.arange(10, 40, 10) * pq.s,
                             durations=[9, 3, 8] * pq.ms,
                             labels=np.array(['btn3', 'btn4', 'btn5']))

                seg.spiketrains.append(train)
                seg.spiketrains.append(train2)

                seg.epochs.append(epc)
                seg.epochs.append(epc2)

                seg.analogsignals.append(a)
                seg.analogsignals.append(b)
                seg.analogsignals.append(c)
                seg.irregularlysampledsignals.append(d)
                seg.events.append(evt)
                a.segment = seg
                b.segment = seg
                c.segment = seg
                d.segment = seg
                evt.segment = seg
                train.segment = seg
                train2.segment = seg
                epc.segment = seg
                epc2.segment = seg

        # write to file
        test_file_name = "test_round_trip.nwb"
        iow = NWBIO(filename=test_file_name, mode='w')
        iow.write_all_blocks(original_blocks)

        ior = NWBIO(filename=test_file_name, mode='r')
        retrieved_blocks = ior.read_all_blocks()

        self.assertEqual(len(retrieved_blocks), 3)
        self.assertEqual(len(retrieved_blocks[2].segments), num_seg)

        original_signal_22b = original_blocks[2].segments[2].analogsignals[1]
        retrieved_signal_22b = retrieved_blocks[2].segments[2].analogsignals[1]
        for attr_name in ("name", "units", "sampling_rate", "t_start"):
            retrieved_attribute = getattr(retrieved_signal_22b, attr_name)
            original_attribute = getattr(original_signal_22b, attr_name)
            self.assertEqual(retrieved_attribute, original_attribute)
        assert_array_equal(retrieved_signal_22b.magnitude,
                           original_signal_22b.magnitude)

        original_issignal_22d = original_blocks[2].segments[
            2].irregularlysampledsignals[0]
        retrieved_issignal_22d = retrieved_blocks[2].segments[
            2].irregularlysampledsignals[0]
        for attr_name in ("name", "units", "t_start"):
            retrieved_attribute = getattr(retrieved_issignal_22d, attr_name)
            original_attribute = getattr(original_issignal_22d, attr_name)
            self.assertEqual(retrieved_attribute, original_attribute)
        assert_array_equal(
            retrieved_issignal_22d.times.rescale('ms').magnitude,
            original_issignal_22d.times.rescale('ms').magnitude)
        assert_array_equal(retrieved_issignal_22d.magnitude,
                           original_issignal_22d.magnitude)

        original_event_11 = original_blocks[1].segments[1].events[0]
        retrieved_event_11 = retrieved_blocks[1].segments[1].events[0]
        for attr_name in ("name", ):
            retrieved_attribute = getattr(retrieved_event_11, attr_name)
            original_attribute = getattr(original_event_11, attr_name)
            self.assertEqual(retrieved_attribute, original_attribute)
        assert_array_equal(
            retrieved_event_11.rescale('ms').magnitude,
            original_event_11.rescale('ms').magnitude)
        assert_array_equal(retrieved_event_11.labels, original_event_11.labels)

        original_spiketrain_131 = original_blocks[1].segments[1].spiketrains[1]
        retrieved_spiketrain_131 = retrieved_blocks[1].segments[1].spiketrains[
            1]
        for attr_name in ("name", "t_start", "t_stop"):
            retrieved_attribute = getattr(retrieved_spiketrain_131, attr_name)
            original_attribute = getattr(original_spiketrain_131, attr_name)
            self.assertEqual(retrieved_attribute, original_attribute)
        assert_array_equal(
            retrieved_spiketrain_131.times.rescale('ms').magnitude,
            original_spiketrain_131.times.rescale('ms').magnitude)

        original_epoch_11 = original_blocks[1].segments[1].epochs[0]
        retrieved_epoch_11 = retrieved_blocks[1].segments[1].epochs[0]
        for attr_name in ("name", ):
            retrieved_attribute = getattr(retrieved_epoch_11, attr_name)
            original_attribute = getattr(original_epoch_11, attr_name)
            self.assertEqual(retrieved_attribute, original_attribute)
        assert_array_equal(
            retrieved_epoch_11.rescale('ms').magnitude,
            original_epoch_11.rescale('ms').magnitude)
        assert_allclose(
            retrieved_epoch_11.durations.rescale('ms').magnitude,
            original_epoch_11.durations.rescale('ms').magnitude)
        assert_array_equal(retrieved_epoch_11.labels, original_epoch_11.labels)
        os.remove(test_file_name)
Exemplo n.º 22
0
    def read_segment(self, lazy=False):
        """

        """
        if lazy:
            raise NotImplementedError("lazy mode not supported")

        seg = Segment(file_origin=os.path.basename(self.filename))

        # loadtxt
        if self.method == 'genfromtxt':
            sig = np.genfromtxt(self.filename,
                                delimiter=self.delimiter,
                                usecols=self.usecols,
                                skip_header=self.skiprows,
                                dtype='f')
            if len(sig.shape) == 1:
                sig = sig[:, np.newaxis]
        elif self.method == 'csv':
            with open(self.filename, 'rU') as fp:
                tab = [l for l in csv.reader(fp, delimiter=self.delimiter)]
            tab = tab[self.skiprows:]
            sig = np.array(tab, dtype='f')
            if self.usecols is not None:
                mask = np.array(self.usecols)
                sig = sig[:, mask]
        elif self.method == 'homemade':
            fid = open(self.filename, 'rU')
            for l in range(self.skiprows):
                fid.readline()
            tab = []
            for line in fid.readlines():
                line = line.replace('\r', '')
                line = line.replace('\n', '')
                parts = line.split(self.delimiter)
                while '' in parts:
                    parts.remove('')
                tab.append(parts)
            sig = np.array(tab, dtype='f')
            if self.usecols is not None:
                mask = np.array(self.usecols)
                sig = sig[:, mask]
        else:
            sig = self.method(self.filename, self.usecols)
            if not isinstance(sig, np.ndarray):
                raise TypeError("method function must return a NumPy array")
            if len(sig.shape) == 1:
                sig = sig[:, np.newaxis]
            elif len(sig.shape) != 2:
                raise ValueError(
                    "method function must return a 1D or 2D NumPy array")

        if self.timecolumn is None:
            sampling_rate = self.sampling_rate
            t_start = self.t_start
        else:
            delta_t = np.diff(sig[:, self.timecolumn])
            mean_delta_t = np.mean(delta_t)
            if (delta_t.max() - delta_t.min()) / mean_delta_t < 1e-6:
                # equally spaced --> AnalogSignal
                sampling_rate = 1.0 / np.mean(np.diff(
                    sig[:, self.timecolumn])) / self.time_units
            else:
                # not equally spaced --> IrregularlySampledSignal
                sampling_rate = None
            t_start = sig[0, self.timecolumn] * self.time_units

        if self.signal_group_mode == 'all-in-one':
            if self.timecolumn is not None:
                mask = list(range(sig.shape[1]))
                if self.timecolumn >= 0:
                    mask.remove(self.timecolumn)
                else:  # allow negative column index
                    mask.remove(sig.shape[1] + self.timecolumn)
                signal = sig[:, mask]
            else:
                signal = sig
            if sampling_rate is None:
                irr_sig = IrregularlySampledSignal(signal[:, self.timecolumn] *
                                                   self.time_units,
                                                   signal * self.units,
                                                   name='multichannel')
                seg.irregularlysampledsignals.append(irr_sig)
            else:
                ana_sig = AnalogSignal(signal * self.units,
                                       sampling_rate=sampling_rate,
                                       t_start=t_start,
                                       channel_index=self.usecols
                                       or np.arange(signal.shape[1]),
                                       name='multichannel')
                seg.analogsignals.append(ana_sig)
        else:
            if self.timecolumn is not None and self.timecolumn < 0:
                time_col = sig.shape[1] + self.timecolumn
            else:
                time_col = self.timecolumn
            for i in range(sig.shape[1]):
                if time_col == i:
                    continue
                signal = sig[:, i] * self.units
                if sampling_rate is None:
                    irr_sig = IrregularlySampledSignal(sig[:, time_col] *
                                                       self.time_units,
                                                       signal,
                                                       t_start=t_start,
                                                       channel_index=i,
                                                       name='Column %d' % i)
                    seg.irregularlysampledsignals.append(irr_sig)
                else:
                    ana_sig = AnalogSignal(signal,
                                           sampling_rate=sampling_rate,
                                           t_start=t_start,
                                           channel_index=i,
                                           name='Column %d' % i)
                    seg.analogsignals.append(ana_sig)

        seg.create_many_to_one_relationship()
        return seg
Exemplo n.º 23
0
    def test__issue_285(self):
        # Spiketrain
        train = SpikeTrain([3, 4, 5] * pq.s, t_stop=10.0)
        unit = Unit()
        train.unit = unit
        unit.spiketrains.append(train)

        epoch = Epoch(np.array([0, 10, 20]),
                      np.array([2, 2, 2]),
                      np.array(["a", "b", "c"]),
                      units="ms")

        blk = Block()
        seg = Segment()
        seg.spiketrains.append(train)
        seg.epochs.append(epoch)
        epoch.segment = seg
        blk.segments.append(seg)

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.spiketrains[0].unit, Unit)
        self.assertIsInstance(r_seg.epochs[0], Epoch)
        os.remove('blk.pkl')

        # Epoch
        epoch = Epoch(times=np.arange(0, 30, 10) * pq.s,
                      durations=[10, 5, 7] * pq.ms,
                      labels=np.array(['btn0', 'btn1', 'btn2'], dtype='S'))
        epoch.segment = Segment()
        blk = Block()
        seg = Segment()
        seg.epochs.append(epoch)
        blk.segments.append(seg)

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.epochs[0].segment, Segment)
        os.remove('blk.pkl')

        # Event
        event = Event(np.arange(0, 30, 10) * pq.s,
                      labels=np.array(['trig0', 'trig1', 'trig2'], dtype='S'))
        event.segment = Segment()

        blk = Block()
        seg = Segment()
        seg.events.append(event)
        blk.segments.append(seg)

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.events[0].segment, Segment)
        os.remove('blk.pkl')

        # IrregularlySampledSignal
        signal = IrregularlySampledSignal(
            [0.0, 1.23, 6.78], [1, 2, 3], units='mV', time_units='ms')
        signal.segment = Segment()

        blk = Block()
        seg = Segment()
        seg.irregularlysampledsignals.append(signal)
        blk.segments.append(seg)
        blk.segments[0].block = blk

        reader = PickleIO(filename="blk.pkl")
        reader.write(blk)

        reader = PickleIO(filename="blk.pkl")
        r_blk = reader.read_block()
        r_seg = r_blk.segments[0]
        self.assertIsInstance(r_seg.irregularlysampledsignals[0].segment, Segment)
        os.remove('blk.pkl')
Exemplo n.º 24
0
    def read_tracking(self):
        """
        Read tracking data_end
        """
        # TODO fix for multiple .pos files if necessary
        # TODO store attributes, such as pixels_per_metre
        pos_filename = os.path.join(self._path, self._base_filename + ".pos")
        if not os.path.exists(pos_filename):
            raise IOError("'.pos' file not found:" + pos_filename)

        with open(pos_filename, "rb") as f:
            params = parse_header_and_leave_cursor(f)
            # print(params)

            sample_rate_split = params["sample_rate"].split(" ")
            assert (sample_rate_split[1] == "hz")
            sample_rate = float(
                sample_rate_split[0]) * pq.Hz  # sample_rate 50.0 hz

            eeg_samples_per_position = float(
                params["EEG_samples_per_position"])  # TODO remove?
            pos_samples_count = int(params["num_pos_samples"])
            bytes_per_timestamp = int(params["bytes_per_timestamp"])
            bytes_per_coord = int(params["bytes_per_coord"])

            timestamp_dtype = ">i" + str(bytes_per_timestamp)
            coord_dtype = ">i" + str(bytes_per_coord)

            bytes_per_pixel_count = 4
            pixel_count_dtype = ">i" + str(bytes_per_pixel_count)

            bytes_per_pos = (
                bytes_per_timestamp +
                2 * self._tracked_spots_count * bytes_per_coord + 8
            )  # pos_format is as follows for this file t,x1,y1,x2,y2,numpix1,numpix2.

            # read data:
            dtype = np.dtype([("t", (timestamp_dtype, 1)),
                              ("coords", (coord_dtype, 1),
                               2 * self._tracked_spots_count),
                              ("pixel_count", (pixel_count_dtype, 1), 2)])

            data = np.fromfile(f, dtype=dtype, count=pos_samples_count)
            assert_end_of_data(f)

            time_scale = float(params["timebase"].split(" ")[0]) * pq.Hz
            times = data["t"].astype(float) / time_scale

            length_scale = float(params["pixels_per_metre"]) / pq.m
            coords = data["coords"].astype(float) / length_scale
            # positions with value 1023 are missing
            for i in range(2 * self._tracked_spots_count):
                coords[np.where(data["coords"][:, i] == 1023)] = np.nan * pq.m

            irr_signals = []
            for i in range(self._tracked_spots_count):
                irr_signal = IrregularlySampledSignal(
                    name="tracking_xy" + str(i),
                    signal=coords[:, i * 2:i * 2 + 1 +
                                  1],  # + 1 for y + 1 for Python
                    times=times,
                    units="m",
                    time_units="s",
                    **params)
                irr_signals.append(irr_signal)

                # TODO add this signal to a channel index?
            return irr_signals
Exemplo n.º 25
0
    def _signal_da_to_neo(self, nix_da_group, lazy):
        """
        Convert a group of NIX DataArrays to a Neo signal. This method expects
        a list of data arrays that all represent the same, multidimensional
        Neo Signal object.
        This returns either an AnalogSignal or IrregularlySampledSignal.

        :param nix_da_group: a list of NIX DataArray objects
        :return: a Neo Signal object
        """
        nix_da_group = sorted(nix_da_group, key=lambda d: d.name)
        neo_attrs = self._nix_attr_to_neo(nix_da_group[0])
        metadata = nix_da_group[0].metadata
        neo_type = nix_da_group[0].type
        neo_attrs["nix_name"] = metadata.name  # use the common base name

        unit = nix_da_group[0].unit
        if lazy:
            signaldata = pq.Quantity(np.empty(0), unit)
            lazy_shape = (len(nix_da_group[0]), len(nix_da_group))
        else:
            signaldata = np.array([d[:] for d in nix_da_group]).transpose()
            signaldata = pq.Quantity(signaldata, unit)
            lazy_shape = None
        timedim = self._get_time_dimension(nix_da_group[0])
        if (neo_type == "neo.analogsignal"
                or timedim.dimension_type == nix.DimensionType.Sample):
            if lazy:
                sampling_period = pq.Quantity(1, timedim.unit)
                t_start = pq.Quantity(0, timedim.unit)
            else:
                if "sampling_interval.units" in metadata.props:
                    sample_units = metadata["sampling_interval.units"]
                else:
                    sample_units = timedim.unit
                sampling_period = pq.Quantity(timedim.sampling_interval,
                                              sample_units)
                if "t_start.units" in metadata.props:
                    tsunits = metadata["t_start.units"]
                else:
                    tsunits = timedim.unit
                t_start = pq.Quantity(timedim.offset, tsunits)
            neo_signal = AnalogSignal(signal=signaldata,
                                      sampling_period=sampling_period,
                                      t_start=t_start,
                                      **neo_attrs)
        elif (neo_type == "neo.irregularlysampledsignal"
              or timedim.dimension_type == nix.DimensionType.Range):
            if lazy:
                times = pq.Quantity(np.empty(0), timedim.unit)
            else:
                times = pq.Quantity(timedim.ticks, timedim.unit)
            neo_signal = IrregularlySampledSignal(signal=signaldata,
                                                  times=times,
                                                  **neo_attrs)
        else:
            return None
        for da in nix_da_group:
            self._object_map[da.id] = neo_signal
        if lazy_shape:
            neo_signal.lazy_shape = lazy_shape
        return neo_signal
Exemplo n.º 26
0
    def test__cut_block_by_epochs(self):
        epoch = Epoch([0.5, 10.0, 25.2] * pq.s,
                      durations=[5.1, 4.8, 5.0] * pq.s,
                      t_start=.1 * pq.s)
        epoch.annotate(epoch_type='a', pick='me')
        epoch.array_annotate(trial_id=[1, 2, 3])

        epoch2 = Epoch([0.6, 9.5, 16.8, 34.1] * pq.s,
                       durations=[4.5, 4.8, 5.0, 5.0] * pq.s,
                       t_start=.1 * pq.s)
        epoch2.annotate(epoch_type='b')
        epoch2.array_annotate(trial_id=[1, 2, 3, 4])

        event = Event(times=[0.5, 10.0, 25.2] * pq.s, t_start=.1 * pq.s)
        event.annotate(event_type='trial start')
        event.array_annotate(trial_id=[1, 2, 3])

        anasig = AnalogSignal(np.arange(50.0) * pq.mV,
                              t_start=.1 * pq.s,
                              sampling_rate=1.0 * pq.Hz)
        irrsig = IrregularlySampledSignal(signal=np.arange(50.0) * pq.mV,
                                          times=anasig.times,
                                          t_start=.1 * pq.s)
        st = SpikeTrain(
            np.arange(0.5, 50, 7) * pq.s,
            t_start=.1 * pq.s,
            t_stop=50.0 * pq.s,
            waveforms=np.array(
                [[[0., 1.], [0.1, 1.1]], [[2., 3.], [2.1, 3.1]],
                 [[4., 5.], [4.1, 5.1]], [[6., 7.], [6.1, 7.1]],
                 [[8., 9.], [8.1, 9.1]], [[12., 13.], [12.1, 13.1]],
                 [[14., 15.], [14.1, 15.1]], [[16., 17.], [16.1, 17.1]]]) *
            pq.mV,
            array_annotations={'spikenum': np.arange(1, 9)})

        seg = Segment()
        seg2 = Segment(name='NoCut')
        seg.epochs = [epoch, epoch2]
        seg.events = [event]
        seg.analogsignals = [anasig]
        seg.irregularlysampledsignals = [irrsig]
        seg.spiketrains = [st]

        block = Block()
        block.segments = [seg, seg2]
        block.create_many_to_one_relationship()

        # test without resetting the time
        cut_block_by_epochs(block, properties={'pick': 'me'})

        assert_neo_object_is_compliant(block)
        self.assertEqual(len(block.segments), 3)

        for epoch_idx in range(len(epoch)):
            self.assertEqual(len(block.segments[epoch_idx].events), 1)
            self.assertEqual(len(block.segments[epoch_idx].spiketrains), 1)
            self.assertEqual(len(block.segments[epoch_idx].analogsignals), 1)
            self.assertEqual(
                len(block.segments[epoch_idx].irregularlysampledsignals), 1)

            if epoch_idx != 0:
                self.assertEqual(len(block.segments[epoch_idx].epochs), 1)
            else:
                self.assertEqual(len(block.segments[epoch_idx].epochs), 2)

            assert_same_attributes(
                block.segments[epoch_idx].spiketrains[0],
                st.time_slice(t_start=epoch.times[epoch_idx],
                              t_stop=epoch.times[epoch_idx] +
                              epoch.durations[epoch_idx]))
            assert_same_attributes(
                block.segments[epoch_idx].analogsignals[0],
                anasig.time_slice(t_start=epoch.times[epoch_idx],
                                  t_stop=epoch.times[epoch_idx] +
                                  epoch.durations[epoch_idx]))
            assert_same_attributes(
                block.segments[epoch_idx].irregularlysampledsignals[0],
                irrsig.time_slice(t_start=epoch.times[epoch_idx],
                                  t_stop=epoch.times[epoch_idx] +
                                  epoch.durations[epoch_idx]))
            assert_same_attributes(
                block.segments[epoch_idx].events[0],
                event.time_slice(t_start=epoch.times[epoch_idx],
                                 t_stop=epoch.times[epoch_idx] +
                                 epoch.durations[epoch_idx]))
        assert_same_attributes(
            block.segments[0].epochs[0],
            epoch.time_slice(t_start=epoch.times[0],
                             t_stop=epoch.times[0] + epoch.durations[0]))
        assert_same_attributes(
            block.segments[0].epochs[1],
            epoch2.time_slice(t_start=epoch.times[0],
                              t_stop=epoch.times[0] + epoch.durations[0]))

        seg = Segment()
        seg2 = Segment(name='NoCut')
        seg.epochs = [epoch, epoch2]
        seg.events = [event]
        seg.analogsignals = [anasig]
        seg.irregularlysampledsignals = [irrsig]
        seg.spiketrains = [st]

        block = Block()
        block.segments = [seg, seg2]
        block.create_many_to_one_relationship()

        # test with resetting the time
        cut_block_by_epochs(block, properties={'pick': 'me'}, reset_time=True)

        assert_neo_object_is_compliant(block)
        self.assertEqual(len(block.segments), 3)

        for epoch_idx in range(len(epoch)):
            self.assertEqual(len(block.segments[epoch_idx].events), 1)
            self.assertEqual(len(block.segments[epoch_idx].spiketrains), 1)
            self.assertEqual(len(block.segments[epoch_idx].analogsignals), 1)
            self.assertEqual(
                len(block.segments[epoch_idx].irregularlysampledsignals), 1)
            if epoch_idx != 0:
                self.assertEqual(len(block.segments[epoch_idx].epochs), 1)
            else:
                self.assertEqual(len(block.segments[epoch_idx].epochs), 2)

            assert_same_attributes(
                block.segments[epoch_idx].spiketrains[0],
                st.time_shift(-epoch.times[epoch_idx]).time_slice(
                    t_start=0 * pq.s, t_stop=epoch.durations[epoch_idx]))

            anasig_target = anasig.time_shift(-epoch.times[epoch_idx])
            anasig_target = anasig_target.time_slice(
                t_start=0 * pq.s, t_stop=epoch.durations[epoch_idx])
            assert_same_attributes(block.segments[epoch_idx].analogsignals[0],
                                   anasig_target)
            irrsig_target = irrsig.time_shift(-epoch.times[epoch_idx])
            irrsig_target = irrsig_target.time_slice(
                t_start=0 * pq.s, t_stop=epoch.durations[epoch_idx])
            assert_same_attributes(
                block.segments[epoch_idx].irregularlysampledsignals[0],
                irrsig_target)
            assert_same_attributes(
                block.segments[epoch_idx].events[0],
                event.time_shift(-epoch.times[epoch_idx]).time_slice(
                    t_start=0 * pq.s, t_stop=epoch.durations[epoch_idx]))

        assert_same_attributes(
            block.segments[0].epochs[0],
            epoch.time_shift(-epoch.times[0]).time_slice(
                t_start=0 * pq.s, t_stop=epoch.durations[0]))
        assert_same_attributes(
            block.segments[0].epochs[1],
            epoch2.time_shift(-epoch.times[0]).time_slice(
                t_start=0 * pq.s, t_stop=epoch.durations[0]))
Exemplo n.º 27
0
    def test__time_slice(self):
        time_slice = [.5, 5.6] * pq.s

        epoch2 = Epoch([0.6, 9.5, 16.8, 34.1] * pq.s,
                       durations=[4.5, 4.8, 5.0, 5.0] * pq.s,
                       t_start=.1 * pq.s)
        epoch2.annotate(epoch_type='b')
        epoch2.array_annotate(trial_id=[1, 2, 3, 4])

        event = Event(times=[0.5, 10.0, 25.2] * pq.s, t_start=.1 * pq.s)
        event.annotate(event_type='trial start')
        event.array_annotate(trial_id=[1, 2, 3])

        anasig = AnalogSignal(np.arange(50.0) * pq.mV,
                              t_start=.1 * pq.s,
                              sampling_rate=1.0 * pq.Hz)
        irrsig = IrregularlySampledSignal(signal=np.arange(50.0) * pq.mV,
                                          times=anasig.times,
                                          t_start=.1 * pq.s)
        st = SpikeTrain(
            np.arange(0.5, 50, 7) * pq.s,
            t_start=.1 * pq.s,
            t_stop=50.0 * pq.s,
            waveforms=np.array(
                [[[0., 1.], [0.1, 1.1]], [[2., 3.], [2.1, 3.1]],
                 [[4., 5.], [4.1, 5.1]], [[6., 7.], [6.1, 7.1]],
                 [[8., 9.], [8.1, 9.1]], [[12., 13.], [12.1, 13.1]],
                 [[14., 15.], [14.1, 15.1]], [[16., 17.], [16.1, 17.1]]]) *
            pq.mV,
            array_annotations={'spikenum': np.arange(1, 9)})

        seg = Segment()
        seg.epochs = [epoch2]
        seg.events = [event]
        seg.analogsignals = [anasig]
        seg.irregularlysampledsignals = [irrsig]
        seg.spiketrains = [st]

        block = Block()
        block.segments = [seg]
        block.create_many_to_one_relationship()

        # test without resetting the time
        sliced = seg.time_slice(time_slice[0], time_slice[1])

        assert_neo_object_is_compliant(sliced)

        self.assertEqual(len(sliced.events), 1)
        self.assertEqual(len(sliced.spiketrains), 1)
        self.assertEqual(len(sliced.analogsignals), 1)
        self.assertEqual(len(sliced.irregularlysampledsignals), 1)
        self.assertEqual(len(sliced.epochs), 1)

        assert_same_attributes(
            sliced.spiketrains[0],
            st.time_slice(t_start=time_slice[0], t_stop=time_slice[1]))
        assert_same_attributes(
            sliced.analogsignals[0],
            anasig.time_slice(t_start=time_slice[0], t_stop=time_slice[1]))
        assert_same_attributes(
            sliced.irregularlysampledsignals[0],
            irrsig.time_slice(t_start=time_slice[0], t_stop=time_slice[1]))
        assert_same_attributes(
            sliced.events[0],
            event.time_slice(t_start=time_slice[0], t_stop=time_slice[1]))
        assert_same_attributes(
            sliced.epochs[0],
            epoch2.time_slice(t_start=time_slice[0], t_stop=time_slice[1]))

        seg = Segment()
        seg.epochs = [epoch2]
        seg.events = [event]
        seg.analogsignals = [anasig]
        seg.irregularlysampledsignals = [irrsig]
        seg.spiketrains = [st]

        block = Block()
        block.segments = [seg]
        block.create_many_to_one_relationship()

        # test with resetting the time
        sliced = seg.time_slice(time_slice[0], time_slice[1], reset_time=True)

        assert_neo_object_is_compliant(sliced)

        self.assertEqual(len(sliced.events), 1)
        self.assertEqual(len(sliced.spiketrains), 1)
        self.assertEqual(len(sliced.analogsignals), 1)
        self.assertEqual(len(sliced.irregularlysampledsignals), 1)
        self.assertEqual(len(sliced.epochs), 1)

        assert_same_attributes(
            sliced.spiketrains[0],
            st.time_shift(-time_slice[0]).time_slice(t_start=0 * pq.s,
                                                     t_stop=time_slice[1] -
                                                     time_slice[0]))

        anasig_target = anasig.copy()
        anasig_target = anasig_target.time_shift(-time_slice[0]).time_slice(
            t_start=0 * pq.s, t_stop=time_slice[1] - time_slice[0])
        assert_same_attributes(sliced.analogsignals[0], anasig_target)
        irrsig_target = irrsig.copy()
        irrsig_target = irrsig_target.time_shift(-time_slice[0]).time_slice(
            t_start=0 * pq.s, t_stop=time_slice[1] - time_slice[0])
        assert_same_attributes(sliced.irregularlysampledsignals[0],
                               irrsig_target)
        assert_same_attributes(
            sliced.events[0],
            event.time_shift(-time_slice[0]).time_slice(t_start=0 * pq.s,
                                                        t_stop=time_slice[1] -
                                                        time_slice[0]))
        assert_same_attributes(
            sliced.epochs[0],
            epoch2.time_shift(-time_slice[0]).time_slice(t_start=0 * pq.s,
                                                         t_stop=time_slice[1] -
                                                         time_slice[0]))

        seg = Segment()

        reader = ExampleRawIO(filename='my_filename.fake')
        reader.parse_header()

        proxy_anasig = AnalogSignalProxy(rawio=reader,
                                         stream_index=0,
                                         inner_stream_channels=None,
                                         block_index=0,
                                         seg_index=0)
        seg.analogsignals.append(proxy_anasig)

        proxy_st = SpikeTrainProxy(rawio=reader,
                                   spike_channel_index=0,
                                   block_index=0,
                                   seg_index=0)
        seg.spiketrains.append(proxy_st)

        proxy_event = EventProxy(rawio=reader,
                                 event_channel_index=0,
                                 block_index=0,
                                 seg_index=0)
        seg.events.append(proxy_event)

        proxy_epoch = EpochProxy(rawio=reader,
                                 event_channel_index=1,
                                 block_index=0,
                                 seg_index=0)
        proxy_epoch.annotate(pick='me')
        seg.epochs.append(proxy_epoch)

        loaded_epoch = proxy_epoch.load()
        loaded_event = proxy_event.load()
        loaded_st = proxy_st.load()
        loaded_anasig = proxy_anasig.load()

        block = Block()
        block.segments = [seg]
        block.create_many_to_one_relationship()

        # test with proxy objects
        sliced = seg.time_slice(time_slice[0], time_slice[1])

        assert_neo_object_is_compliant(sliced)

        sliced_event = loaded_event.time_slice(t_start=time_slice[0],
                                               t_stop=time_slice[1])
        has_event = len(sliced_event) > 0

        sliced_anasig = loaded_anasig.time_slice(t_start=time_slice[0],
                                                 t_stop=time_slice[1])

        sliced_st = loaded_st.time_slice(t_start=time_slice[0],
                                         t_stop=time_slice[1])

        self.assertEqual(len(sliced.events), int(has_event))
        self.assertEqual(len(sliced.spiketrains), 1)
        self.assertEqual(len(sliced.analogsignals), 1)

        self.assertTrue(isinstance(sliced.spiketrains[0], SpikeTrain))
        assert_same_attributes(sliced.spiketrains[0], sliced_st)

        self.assertTrue(isinstance(sliced.analogsignals[0], AnalogSignal))
        assert_same_attributes(sliced.analogsignals[0], sliced_anasig)

        if has_event:
            self.assertTrue(isinstance(sliced.events[0], Event))
            assert_same_attributes(sliced.events[0], sliced_event)
Exemplo n.º 28
0
    def _handle_timeseries(self, name, timeseries):
        # todo: check timeseries.attrs.get('schema_id')
        # todo: handle timeseries.attrs.get('source')
        subtype = timeseries.attrs['ancestry'][-1]

        data_group = timeseries.get('data')
        dtype = data_group.dtype
        if self._lazy:
            data = np.array((), dtype=dtype)
            lazy_shape = data_group.value.shape  # inefficient to load the data to get the shape
        else:
            data = data_group.value

        if dtype.type is np.string_:
            if self._lazy:
                times = np.array(())
            else:
                times = timeseries.get('timestamps')
            durations = timeseries.get('durations')
            if durations:
                # Epoch
                if self._lazy:
                    durations = np.array(())
                obj = Epoch(times=times,
                            durations=durations,
                            labels=data,
                            units='second')
            else:
                # Event
                obj = Event(times=times,
                            labels=data,
                            units='second')
        else:
            units = get_units(data_group)
            if 'starting_time' in timeseries:
                # AnalogSignal
                sampling_metadata = timeseries.get('starting_time')
                t_start = sampling_metadata.value * pq.s
                sampling_rate = sampling_metadata.attrs.get('rate') * pq.Hz
                assert sampling_metadata.attrs.get('unit') == 'Seconds'
                # todo: handle data.attrs['resolution']
                obj = AnalogSignal(data,
                                   units=units,
                                   sampling_rate=sampling_rate,
                                   t_start=t_start,
                                   name=name)
            elif 'timestamps' in timeseries:
                # IrregularlySampledSignal
                if self._lazy:
                    time_data = np.array(())
                else:
                    time_data = timeseries.get('timestamps')
                    assert time_data.attrs.get('unit') == 'Seconds'
                obj = IrregularlySampledSignal(time_data.value,
                                               data,
                                               units=units,
                                               time_units=pq.second)
            else:
                raise Exception("Timeseries group does not contain sufficient time information")
        if self._lazy:
            obj.lazy_shape = lazy_shape
        return obj