Exemplo n.º 1
0
def gradient_calc(seq_len, input_size, hidden_size, batch_size,
                  epsilon=None, rand_scale=None, inp_bl=None):
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    input_shape = (input_size, seq_len * batch_size)

    # generate input if one is not given
    if inp_bl is None:
        inp_bl = np.random.randn(*input_shape)

    # neon lstm instance
    lstm = LSTM(hidden_size, Gaussian(), Tanh(), Logistic())
    inpa = lstm.be.array(np.copy(inp_bl))

    # run fprop on the baseline input
    lstm.configure((input_size, seq_len))
    lstm.prev_layer = True  # Hack to force allocating a delta buffer
    lstm.allocate()
    lstm.set_deltas([lstm.be.iobuf(lstm.in_shape)])
    out_bl = lstm.fprop(inpa).get()

    # random scaling/hash to generate fake loss
    if rand_scale is None:
        rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0
    # loss function would be:
    # loss_bl = np.sum(rand_scale * out_bl)

    # run back prop with rand_scale as the errors
    # use copy to avoid any interactions
    deltas_neon = lstm.bprop(lstm.be.array(np.copy(rand_scale))).get()

    # add a perturbation to each input element
    grads_est = np.zeros(inpa.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inpa.size):
        save_val = inp_pert.flat[pert_ind]

        inp_pert.flat[pert_ind] = save_val + epsilon
        reset_lstm(lstm)
        lstm.allocate()
        out_pos = lstm.fprop(lstm.be.array(inp_pert)).get()

        inp_pert.flat[pert_ind] = save_val - epsilon
        reset_lstm(lstm)
        lstm.allocate()
        out_neg = lstm.fprop(lstm.be.array(inp_pert)).get()

        # calculate the loss with perturbations
        loss_pos = np.sum(rand_scale*out_pos)
        loss_neg = np.sum(rand_scale*out_neg)
        # compute the gradient estimate
        grad = 0.5*(loss_pos-loss_neg)/epsilon

        grads_est.flat[pert_ind] = grad

        # reset the perturbed input element
        inp_pert.flat[pert_ind] = save_val

    del lstm
    return (grads_est, deltas_neon)
Exemplo n.º 2
0
def test_biLSTM_fprop_rnn(backend_default, fargs):

    # basic sanity check with 0 weights random inputs
    seq_len, input_size, hidden_size, batch_size = fargs
    in_shape = (input_size, seq_len)
    out_shape = (hidden_size, seq_len)
    NervanaObject.be.bsz = batch_size

    # setup the bi-directional rnn
    init_glorot = GlorotUniform()
    bilstm = BiLSTM(hidden_size, gate_activation=Logistic(),
                    activation=Tanh(), init=init_glorot, reset_cells=True)
    bilstm.configure(in_shape)
    bilstm.prev_layer = True
    bilstm.allocate()

    # setup the bi-directional rnn
    init_glorot = GlorotUniform()
    rnn = LSTM(hidden_size, gate_activation=Logistic(),
               activation=Tanh(), init=init_glorot, reset_cells=True)
    rnn.configure(in_shape)
    rnn.prev_layer = True
    rnn.allocate()

    # same weight for bi-rnn backward and rnn weights
    nout = hidden_size
    bilstm.W_input_b[:] = bilstm.W_input_f
    bilstm.W_recur_b[:] = bilstm.W_recur_f
    bilstm.b_b[:] = bilstm.b_f
    bilstm.dW[:] = 0
    rnn.W_input[:] = bilstm.W_input_f
    rnn.W_recur[:] = bilstm.W_recur_f
    rnn.b[:] = bilstm.b_f
    rnn.dW[:] = 0

    # inputs - random and flipped left-to-right inputs
    lr = np.random.random((input_size, seq_len * batch_size))
    lr_rev = list(reversed(get_steps(lr.copy(), in_shape)))

    rl = con(lr_rev, axis=1)
    inp_lr = bilstm.be.array(lr)
    inp_rl = bilstm.be.array(rl)
    inp_rnn = rnn.be.array(lr)

    # outputs
    out_lr = bilstm.fprop(inp_lr).get().copy()
    bilstm.h_buffer[:] = 0
    out_rl = bilstm.fprop(inp_rl).get()
    out_rnn = rnn.fprop(inp_rnn).get().copy()

    # views
    out_lr_f_s = get_steps(out_lr[:nout], out_shape)
    out_lr_b_s = get_steps(out_lr[nout:], out_shape)
    out_rl_f_s = get_steps(out_rl[:nout], out_shape)
    out_rl_b_s = get_steps(out_rl[nout:], out_shape)
    out_rnn_s = get_steps(out_rnn, out_shape)

    # asserts for fprop
    for x_rnn, x_f, x_b, y_f, y_b in zip(out_rnn_s, out_lr_f_s, out_lr_b_s,
                                         reversed(out_rl_f_s), reversed(out_rl_b_s)):
        assert allclose_with_out(x_f, y_b, rtol=0.0, atol=1.0e-5)
        assert allclose_with_out(x_b, y_f, rtol=0.0, atol=1.0e-5)
        assert allclose_with_out(x_rnn, x_f, rtol=0.0, atol=1.0e-5)
        assert allclose_with_out(x_rnn, y_b, rtol=0.0, atol=1.0e-5)
Exemplo n.º 3
0
def test_biLSTM_fprop_rnn(backend_default, fargs):

    # basic sanity check with 0 weights random inputs
    seq_len, input_size, hidden_size, batch_size = fargs
    in_shape = (input_size, seq_len)
    out_shape = (hidden_size, seq_len)
    NervanaObject.be.bsz = batch_size

    # setup the bi-directional rnn
    init_glorot = GlorotUniform()
    bilstm = BiLSTM(hidden_size,
                    gate_activation=Logistic(),
                    activation=Tanh(),
                    init=init_glorot,
                    reset_cells=True)
    bilstm.configure(in_shape)
    bilstm.prev_layer = True
    bilstm.allocate()

    # setup the bi-directional rnn
    init_glorot = GlorotUniform()
    rnn = LSTM(hidden_size,
               gate_activation=Logistic(),
               activation=Tanh(),
               init=init_glorot,
               reset_cells=True)
    rnn.configure(in_shape)
    rnn.prev_layer = True
    rnn.allocate()

    # same weight for bi-rnn backward and rnn weights
    nout = hidden_size
    bilstm.W_input_b[:] = bilstm.W_input_f
    bilstm.W_recur_b[:] = bilstm.W_recur_f
    bilstm.b_b[:] = bilstm.b_f
    bilstm.dW[:] = 0
    rnn.W_input[:] = bilstm.W_input_f
    rnn.W_recur[:] = bilstm.W_recur_f
    rnn.b[:] = bilstm.b_f
    rnn.dW[:] = 0

    # inputs - random and flipped left-to-right inputs
    lr = np.random.random((input_size, seq_len * batch_size))
    lr_rev = list(reversed(get_steps(lr.copy(), in_shape)))

    rl = con(lr_rev, axis=1)
    inp_lr = bilstm.be.array(lr)
    inp_rl = bilstm.be.array(rl)
    inp_rnn = rnn.be.array(lr)

    # outputs
    out_lr = bilstm.fprop(inp_lr).get().copy()
    bilstm.h_buffer[:] = 0
    out_rl = bilstm.fprop(inp_rl).get()
    out_rnn = rnn.fprop(inp_rnn).get().copy()

    # views
    out_lr_f_s = get_steps(out_lr[:nout], out_shape)
    out_lr_b_s = get_steps(out_lr[nout:], out_shape)
    out_rl_f_s = get_steps(out_rl[:nout], out_shape)
    out_rl_b_s = get_steps(out_rl[nout:], out_shape)
    out_rnn_s = get_steps(out_rnn, out_shape)

    # asserts for fprop
    for x_rnn, x_f, x_b, y_f, y_b in zip(out_rnn_s, out_lr_f_s, out_lr_b_s,
                                         reversed(out_rl_f_s),
                                         reversed(out_rl_b_s)):
        assert allclose_with_out(x_f, y_b, rtol=0.0, atol=1.0e-5)
        assert allclose_with_out(x_b, y_f, rtol=0.0, atol=1.0e-5)
        assert allclose_with_out(x_rnn, x_f, rtol=0.0, atol=1.0e-5)
        assert allclose_with_out(x_rnn, y_b, rtol=0.0, atol=1.0e-5)
Exemplo n.º 4
0
def check_lstm(seq_len, input_size, hidden_size,
               batch_size, init_func, inp_moms=[0.0, 1.0]):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    hidden_shape = (hidden_size, seq_len * batch_size)
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon LSTM
    lstm = LSTM(hidden_size,
                init_func,
                activation=Tanh(),
                gate_activation=Logistic())

    inp = np.random.rand(*input_shape)*inp_moms[1] + inp_moms[0]
    inpa = lstm.be.array(inp)
    # run neon fprop
    lstm.configure((input_size, seq_len))
    lstm.prev_layer = True  # Hack to force allocating a delta buffer
    lstm.allocate()
    lstm.set_deltas([lstm.be.iobuf(lstm.in_shape)])
    lstm.fprop(inpa)

    # reference numpy LSTM
    lstm_ref = RefLSTM()
    WLSTM = lstm_ref.init(input_size, hidden_size)

    # make ref weights and biases with neon model
    WLSTM[0, :] = lstm.b.get().T
    WLSTM[1:input_size+1, :] = lstm.W_input.get().T
    WLSTM[input_size+1:] = lstm.W_recur.get().T

    # transpose input X and do fprop
    inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size)
    (Hout_ref, cprev, hprev, batch_cache) = lstm_ref.forward(inp_ref,
                                                             WLSTM)

    # the output needs transpose as well
    Hout_ref = Hout_ref.reshape(seq_len * batch_size, hidden_size).T
    IFOGf_ref = batch_cache['IFOGf'].reshape(seq_len * batch_size, hidden_size * 4).T
    Ct_ref = batch_cache['Ct'].reshape(seq_len * batch_size, hidden_size).T

    # compare results
    print '====Verifying IFOG===='
    allclose_with_out(lstm.ifog_buffer.get(),
                      IFOGf_ref,
                      rtol=0.0,
                      atol=1.0e-5)

    print '====Verifying cell states===='
    allclose_with_out(lstm.c_act_buffer.get(),
                      Ct_ref,
                      rtol=0.0,
                      atol=1.0e-5)

    print '====Verifying hidden states===='
    allclose_with_out(lstm.outputs.get(),
                      Hout_ref,
                      rtol=0.0,
                      atol=1.0e-5)

    print 'fprop is verified'

    # now test the bprop
    # generate random deltas tensor
    deltas = np.random.randn(*hidden_shape)

    lstm.bprop(lstm.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = lstm.dW_input.get()
    dWrecur_neon = lstm.dW_recur.get()
    db_neon = lstm.db.get()

    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size)
    (dX_ref, dWLSTM_ref, dc0_ref, dh0_ref) = lstm_ref.backward(deltas_ref,
                                                               batch_cache)
    dWrecur_ref = dWLSTM_ref[-hidden_size:, :]
    dWinput_ref = dWLSTM_ref[1:input_size+1, :]
    db_ref = dWLSTM_ref[0, :]
    dX_ref = dX_ref.reshape(seq_len * batch_size, input_size).T

    # compare results
    print 'Making sure neon LSTM match numpy LSTM in bprop'
    print '====Verifying update on W_recur===='

    assert allclose_with_out(dWrecur_neon,
                             dWrecur_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_input===='
    assert allclose_with_out(dWinput_neon,
                             dWinput_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on bias===='
    assert allclose_with_out(db_neon.flatten(),
                             db_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying output delta===='
    assert allclose_with_out(lstm.out_deltas_buffer.get(),
                             dX_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print 'bprop is verified'

    return
Exemplo n.º 5
0
def check_lstm(seq_len,
               input_size,
               hidden_size,
               batch_size,
               init_func,
               inp_moms=[0.0, 1.0]):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    hidden_shape = (hidden_size, seq_len * batch_size)
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon LSTM
    lstm = LSTM(hidden_size,
                init_func,
                activation=Tanh(),
                gate_activation=Logistic())

    inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0]
    inpa = lstm.be.array(inp)
    # run neon fprop
    lstm.configure((input_size, seq_len))
    lstm.allocate()
    lstm.fprop(inpa)

    # reference numpy LSTM
    lstm_ref = RefLSTM()
    WLSTM = lstm_ref.init(input_size, hidden_size)

    # make ref weights and biases with neon model
    WLSTM[0, :] = lstm.b.get().T
    WLSTM[1:input_size + 1, :] = lstm.W_input.get().T
    WLSTM[input_size + 1:] = lstm.W_recur.get().T

    # transpose input X and do fprop
    inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size)
    (Hout_ref, cprev, hprev, batch_cache) = lstm_ref.forward(inp_ref, WLSTM)

    # the output needs transpose as well
    Hout_ref = Hout_ref.reshape(seq_len * batch_size, hidden_size).T
    IFOGf_ref = batch_cache['IFOGf'].reshape(seq_len * batch_size,
                                             hidden_size * 4).T
    Ct_ref = batch_cache['Ct'].reshape(seq_len * batch_size, hidden_size).T

    # compare results
    print '====Verifying IFOG===='
    allclose_with_out(lstm.ifog_buffer.get(), IFOGf_ref, rtol=0.0, atol=1.0e-5)

    print '====Verifying cell states===='
    allclose_with_out(lstm.c_act_buffer.get(), Ct_ref, rtol=0.0, atol=1.0e-5)

    print '====Verifying hidden states===='
    allclose_with_out(lstm.h_buffer.get(), Hout_ref, rtol=0.0, atol=1.0e-5)

    print 'fprop is verified'

    # now test the bprop
    # generate random deltas tensor
    deltas = np.random.randn(*hidden_shape)

    lstm.bprop(lstm.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = lstm.dW_input.get()
    dWrecur_neon = lstm.dW_recur.get()
    db_neon = lstm.db.get()

    # import pdb; pdb.set_trace()
    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size)
    (dX_ref, dWLSTM_ref, dc0_ref,
     dh0_ref) = lstm_ref.backward(deltas_ref, batch_cache)
    dWrecur_ref = dWLSTM_ref[-hidden_size:, :]
    dWinput_ref = dWLSTM_ref[1:input_size + 1, :]
    db_ref = dWLSTM_ref[0, :]
    dX_ref = dX_ref.reshape(seq_len * batch_size, input_size).T

    # compare results
    print 'Making sure neon LSTM match numpy LSTM in bprop'
    print '====Verifying update on W_recur===='

    assert allclose_with_out(dWrecur_neon,
                             dWrecur_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_input===='
    assert allclose_with_out(dWinput_neon,
                             dWinput_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on bias===='
    assert allclose_with_out(db_neon.flatten(), db_ref, rtol=0.0, atol=1.0e-5)

    print '====Verifying output delta===='
    assert allclose_with_out(lstm.out_deltas_buffer.get(),
                             dX_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print 'bprop is verified'

    return
Exemplo n.º 6
0
def gradient_calc(seq_len,
                  input_size,
                  hidden_size,
                  batch_size,
                  epsilon=None,
                  rand_scale=None,
                  inp_bl=None):
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    input_shape = (input_size, seq_len * batch_size)

    # generate input if one is not given
    if inp_bl is None:
        inp_bl = np.random.randn(*input_shape)

    # neon lstm instance
    lstm = LSTM(hidden_size, Gaussian(), Tanh(), Logistic())
    inpa = lstm.be.array(np.copy(inp_bl))

    # run fprop on the baseline input
    lstm.configure((input_size, seq_len))
    lstm.allocate()
    out_bl = lstm.fprop(inpa).get()

    # random scaling/hash to generate fake loss
    if rand_scale is None:
        rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0
    # loss function would be:
    # loss_bl = np.sum(rand_scale * out_bl)

    # run back prop with rand_scale as the errors
    # use copy to avoid any interactions
    deltas_neon = lstm.bprop(lstm.be.array(np.copy(rand_scale))).get()

    # add a perturbation to each input element
    grads_est = np.zeros(inpa.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inpa.size):
        save_val = inp_pert.flat[pert_ind]

        inp_pert.flat[pert_ind] = save_val + epsilon
        reset_lstm(lstm)
        lstm.allocate()
        out_pos = lstm.fprop(lstm.be.array(inp_pert)).get()

        inp_pert.flat[pert_ind] = save_val - epsilon
        reset_lstm(lstm)
        lstm.allocate()
        out_neg = lstm.fprop(lstm.be.array(inp_pert)).get()

        # calculate the loss with perturbations
        loss_pos = np.sum(rand_scale * out_pos)
        loss_neg = np.sum(rand_scale * out_neg)
        # compute the gradient estimate
        grad = 0.5 * (loss_pos - loss_neg) / epsilon

        grads_est.flat[pert_ind] = grad

        # reset the perturbed input element
        inp_pert.flat[pert_ind] = save_val

    del lstm
    return (grads_est, deltas_neon)