Exemplo n.º 1
0
def gradient_calc(seq_len, input_size, hidden_size, batch_size,
                  epsilon=None, rand_scale=None, inp_bl=None):
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    input_shape = (input_size, seq_len * batch_size)

    # generate input if one is not given
    if inp_bl is None:
        inp_bl = np.random.randn(*input_shape)

    # neon gru instance
    gru = GRU(hidden_size, init=Gaussian(), activation=Tanh(), gate_activation=Logistic())
    inpa = gru.be.array(np.copy(inp_bl))

    # run fprop on the baseline input
    gru.configure((input_size, seq_len))
    gru.prev_layer = True
    gru.allocate()
    gru.set_deltas([gru.be.iobuf(gru.in_shape)])
    out_bl = gru.fprop(inpa).get()

    # random scaling/hash to generate fake loss
    if rand_scale is None:
        rand_scale = np.random.random(out_bl.shape) * 2.0 - 1.0
    # loss function would be:
    # loss_bl = np.sum(rand_scale * out_bl)

    # run back prop with rand_scale as the errors
    # use copy to avoid any interactions
    deltas_neon = gru.bprop(gru.be.array(np.copy(rand_scale))).get()

    # add a perturbation to each input element
    grads_est = np.zeros(inpa.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inpa.size):
        save_val = inp_pert.flat[pert_ind]

        inp_pert.flat[pert_ind] = save_val + epsilon
        reset_gru(gru)
        gru.allocate()
        out_pos = gru.fprop(gru.be.array(inp_pert)).get()

        inp_pert.flat[pert_ind] = save_val - epsilon
        reset_gru(gru)
        gru.allocate()
        out_neg = gru.fprop(gru.be.array(inp_pert)).get()

        # calculate the loss with perturbations
        loss_pos = np.sum(rand_scale * out_pos)
        loss_neg = np.sum(rand_scale * out_neg)
        # compute the gradient estimate
        grad = 0.5 / float(epsilon) * (loss_pos - loss_neg)

        grads_est.flat[pert_ind] = grad

        # reset the perturbed input element
        inp_pert.flat[pert_ind] = save_val

    del gru
    return (grads_est, deltas_neon)
Exemplo n.º 2
0
def test_multi_optimizer(backend_default):
    opt_gdm = GradientDescentMomentum(learning_rate=0.001,
                                      momentum_coef=0.9,
                                      wdecay=0.005)
    opt_ada = Adadelta()
    opt_adam = Adam()
    opt_rms = RMSProp()
    opt_rms_1 = RMSProp(gradient_clip_value=5)
    init_one = Gaussian(scale=0.01)

    l1 = Conv((11, 11, 64),
              strides=4,
              padding=3,
              init=init_one,
              bias=Constant(0),
              activation=Rectlin())
    l2 = Affine(nout=4096,
                init=init_one,
                bias=Constant(1),
                activation=Rectlin())
    l3 = LSTM(output_size=1000,
              init=init_one,
              activation=Logistic(),
              gate_activation=Tanh())
    l4 = GRU(output_size=100,
             init=init_one,
             activation=Logistic(),
             gate_activation=Tanh())
    layers = [l1, l2, l3, l4]
    layer_list = []
    for layer in layers:
        if isinstance(layer, list):
            layer_list.extend(layer)
        else:
            layer_list.append(layer)

    opt = MultiOptimizer({
        'default': opt_gdm,
        'Bias': opt_ada,
        'Convolution': opt_adam,
        'Linear': opt_rms,
        'LSTM': opt_rms_1,
        'GRU': opt_rms_1
    })

    map_list = opt._map_optimizers(layer_list)
    assert map_list[opt_adam][0].__class__.__name__ == 'Convolution'
    assert map_list[opt_ada][0].__class__.__name__ == 'Bias'
    assert map_list[opt_rms][0].__class__.__name__ == 'Linear'
    assert map_list[opt_gdm][0].__class__.__name__ == 'Activation'
    assert map_list[opt_rms_1][0].__class__.__name__ == 'LSTM'
    assert map_list[opt_rms_1][1].__class__.__name__ == 'GRU'
Exemplo n.º 3
0
def test_multi_optimizer(backend_default_mkl):
    """
    A test for MultiOptimizer.
    """
    opt_gdm = GradientDescentMomentum(
        learning_rate=0.001, momentum_coef=0.9, wdecay=0.005)
    opt_ada = Adadelta()
    opt_adam = Adam()
    opt_rms = RMSProp()
    opt_rms_1 = RMSProp(gradient_clip_value=5)
    init_one = Gaussian(scale=0.01)

    l1 = Conv((11, 11, 64), strides=4, padding=3,
              init=init_one, bias=Constant(0), activation=Rectlin())
    l2 = Affine(nout=4096, init=init_one,
                bias=Constant(1), activation=Rectlin())
    l3 = LSTM(output_size=1000, init=init_one, activation=Logistic(), gate_activation=Tanh())
    l4 = GRU(output_size=100, init=init_one, activation=Logistic(), gate_activation=Tanh())
    layers = [l1, l2, l3, l4]
    layer_list = []
    for layer in layers:
        if isinstance(layer, list):
            layer_list.extend(layer)
        else:
            layer_list.append(layer)
    for l in layer_list:
        l.configure(in_obj=(16, 28, 28))
        l.allocate()
    # separate layer_list into two, the last two recurrent layers and the rest
    layer_list1, layer_list2 = layer_list[:-2], layer_list[-2:]
    opt = MultiOptimizer({'default': opt_gdm,
                          'Bias': opt_ada,
                          'Convolution': opt_adam,
                          'Convolution_bias': opt_adam,
                          'Linear': opt_rms,
                          'LSTM': opt_rms_1,
                          'GRU': opt_rms_1})
    layers_to_optimize1 = [l for l in layer_list1 if isinstance(l, ParameterLayer)]
    layers_to_optimize2 = [l for l in layer_list2 if isinstance(l, ParameterLayer)]
    opt.optimize(layers_to_optimize1, 0)
    assert opt.map_list[opt_adam][0].__class__.__name__ is 'Convolution_bias'
    assert opt.map_list[opt_rms][0].__class__.__name__ == 'Linear'
    opt.optimize(layers_to_optimize2, 0)
    assert opt.map_list[opt_rms_1][0].__class__.__name__ == 'LSTM'
    assert opt.map_list[opt_rms_1][1].__class__.__name__ == 'GRU'
Exemplo n.º 4
0
                 onehot_input=False)

# weight initialization
init = Uniform(low=-0.1, high=0.1)

# model initialization
rlayer_params = {
    "output_size": hidden_size,
    "init": init,
    "activation": Tanh(),
    "gate_activation": Logistic()
}
if args.rlayer_type == 'lstm':
    rlayer1, rlayer2 = LSTM(**rlayer_params), LSTM(**rlayer_params)
else:
    rlayer1, rlayer2 = GRU(**rlayer_params), GRU(**rlayer_params)

layers = [
    LookupTable(vocab_size=len(train_set.vocab),
                embedding_dim=hidden_size,
                init=init), rlayer1, rlayer2,
    Affine(len(train_set.vocab), init, bias=init, activation=Softmax())
]

cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))

model = Model(layers=layers)

# vanilla gradient descent with decay schedule on learning rate and gradient scaling
learning_rate_sched = Schedule(list(range(5, args.epochs)), .5)
optimizer = GradientDescentMomentum(1,
Exemplo n.º 5
0
gradient_clip_value = 5

# load data and parse on character-level
ticker_task = CopyTask(seq_len_max, vec_size)
train_set = Ticker(ticker_task)

# weight initialization
init = Uniform(low=-0.08, high=0.08)

output_size = 8
N = 120  # number of memory locations
M = 8  # size of a memory location

# model initialization
layers = [
    GRU(hidden_size, init, activation=Tanh(), gate_activation=Logistic()),
    Affine(train_set.nout, init, bias=init, activation=Logistic())
]

cost = GeneralizedCostMask(costfunc=CrossEntropyBinary())

model = Model(layers=layers)

optimizer = RMSProp(gradient_clip_value=gradient_clip_value,
                    stochastic_round=args.rounding)

# configure callbacks
callbacks = Callbacks(model, **args.callback_args)

# we can use the training set as the validation set,
# since the data is tickerally generated
Exemplo n.º 6
0
# weight initialization
init = Uniform(low=-0.08, high=0.08)

# conditional recurrent autoencoder model
num_layers = 1
encoder, decoder = [], []

# decoder_connections indicates the encoder layer indicies to receive conditional inputs from
decoder_connections = []
for ii in range(num_layers):
    name = "GRU" + str(ii + 1)
    encoder.append(
        GRU(hidden_size,
            init,
            activation=Tanh(),
            gate_activation=Logistic(),
            reset_cells=True,
            name=name + "Enc"))
    decoder.append(
        GRU(hidden_size,
            init,
            activation=Tanh(),
            gate_activation=Logistic(),
            reset_cells=True,
            name=name + "Dec"))
    decoder_connections.append(ii)
decoder.append(
    Affine(train_set.nout,
           init,
           bias=init,
           activation=Softmax(),
Exemplo n.º 7
0
def check_gru(seq_len,
              input_size,
              hidden_size,
              batch_size,
              init_func,
              inp_moms=[0.0, 1.0],
              add_init_state=False):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    output_shape = (hidden_size, seq_len * batch_size)
    slice_shape = (hidden_size, batch_size)

    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon GRU
    gru = GRU(hidden_size,
              init_func,
              activation=Tanh(),
              gate_activation=Logistic())

    # generate random input tensor
    inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0]
    inp_dev = gru.be.array(inp)
    # generate random deltas tensor
    deltas = np.random.randn(*output_shape)

    # run neon fprop
    gru.configure((input_size, seq_len))
    gru.prev_layer = True
    gru.allocate()

    test_buffer = DeltasTree()
    gru.allocate_deltas(test_buffer)
    test_buffer.allocate_buffers()
    gru.set_deltas(test_buffer)

    if add_init_state:
        init_state = np.random.rand(*slice_shape) * inp_moms[1] + inp_moms[0]
        init_state_dev = gru.be.array(init_state)
        gru.fprop(inp_dev, init_state=init_state_dev)
    else:
        gru.fprop(inp_dev)

    # reference numpy GRU
    gru_ref = RefGRU(input_size, hidden_size)
    WGRU = gru_ref.weights

    # make ref weights and biases the same with neon model
    r_range = list(range(hidden_size))
    z_range = list(range(hidden_size, hidden_size * 2))
    c_range = list(range(hidden_size * 2, hidden_size * 3))

    WGRU[gru_ref.weights_ind_br][:] = gru.b.get()[r_range]
    WGRU[gru_ref.weights_ind_bz][:] = gru.b.get()[z_range]
    WGRU[gru_ref.weights_ind_bc][:] = gru.b.get()[c_range]

    WGRU[gru_ref.weights_ind_Wxr][:] = gru.W_input.get()[r_range]
    WGRU[gru_ref.weights_ind_Wxz][:] = gru.W_input.get()[z_range]
    WGRU[gru_ref.weights_ind_Wxc][:] = gru.W_input.get()[c_range]

    WGRU[gru_ref.weights_ind_Rhr][:] = gru.W_recur.get()[r_range]
    WGRU[gru_ref.weights_ind_Rhz][:] = gru.W_recur.get()[z_range]
    WGRU[gru_ref.weights_ind_Rhc][:] = gru.W_recur.get()[c_range]

    # transpose input X and do fprop
    # the reference code expects these shapes:
    # input_shape: (seq_len, input_size, batch_size)
    # output_shape: (seq_len, hidden_size, batch_size)
    inp_ref = inp.copy().T.reshape(seq_len, batch_size,
                                   input_size).swapaxes(1, 2)
    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size,
                                         hidden_size).swapaxes(1, 2)

    if add_init_state:
        init_state_ref = init_state.copy()
        (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list,
         dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref, init_state_ref)
    else:
        (dWGRU_ref, h_ref_list, dh_ref_list, dr_ref_list, dz_ref_list,
         dc_ref_list) = gru_ref.lossFun(inp_ref, deltas_ref)

    neon_logger.display('====Verifying hidden states====')
    assert allclose_with_out(gru.outputs.get(),
                             h_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    neon_logger.display('fprop is verified')

    # now test the bprop
    neon_logger.display('Making sure neon GRU matches numpy GRU in bprop')
    gru.bprop(gru.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = gru.dW_input.get()
    dWrecur_neon = gru.dW_recur.get()
    db_neon = gru.db.get()
    dWxr_neon = dWinput_neon[r_range]
    dWxz_neon = dWinput_neon[z_range]
    dWxc_neon = dWinput_neon[c_range]
    dWrr_neon = dWrecur_neon[r_range]
    dWrz_neon = dWrecur_neon[z_range]
    dWrc_neon = dWrecur_neon[c_range]
    dbr_neon = db_neon[r_range]
    dbz_neon = db_neon[z_range]
    dbc_neon = db_neon[c_range]

    drzc_neon = gru.rzhcan_delta_buffer.get()
    dr_neon = drzc_neon[r_range]
    dz_neon = drzc_neon[z_range]
    dc_neon = drzc_neon[c_range]

    dWxr_ref = dWGRU_ref[gru_ref.dW_ind_Wxr]
    dWxz_ref = dWGRU_ref[gru_ref.dW_ind_Wxz]
    dWxc_ref = dWGRU_ref[gru_ref.dW_ind_Wxc]
    dWrr_ref = dWGRU_ref[gru_ref.dW_ind_Rhr]
    dWrz_ref = dWGRU_ref[gru_ref.dW_ind_Rhz]
    dWrc_ref = dWGRU_ref[gru_ref.dW_ind_Rhc]
    dbr_ref = dWGRU_ref[gru_ref.dW_ind_br]
    dbz_ref = dWGRU_ref[gru_ref.dW_ind_bz]
    dbc_ref = dWGRU_ref[gru_ref.dW_ind_bc]

    # neon_logger.display '====Verifying hidden deltas ===='
    neon_logger.display('====Verifying r deltas ====')
    assert allclose_with_out(dr_neon, dr_ref_list, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying z deltas ====')
    assert allclose_with_out(dz_neon, dz_ref_list, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying hcan deltas ====')
    assert allclose_with_out(dc_neon, dc_ref_list, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying update on W_input====')
    neon_logger.display('dWxr')
    assert allclose_with_out(dWxr_neon, dWxr_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWxz')
    assert allclose_with_out(dWxz_neon, dWxz_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWxc')
    assert allclose_with_out(dWxc_neon, dWxc_ref, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying update on W_recur====')

    neon_logger.display('dWrr')
    assert allclose_with_out(dWrr_neon, dWrr_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWrz')
    assert allclose_with_out(dWrz_neon, dWrz_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dWrc')
    assert allclose_with_out(dWrc_neon, dWrc_ref, rtol=0.0, atol=1.0e-5)

    neon_logger.display('====Verifying update on bias====')
    neon_logger.display('dbr')
    assert allclose_with_out(dbr_neon, dbr_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dbz')
    assert allclose_with_out(dbz_neon, dbz_ref, rtol=0.0, atol=1.0e-5)
    neon_logger.display('dbc')
    assert allclose_with_out(dbc_neon, dbc_ref, rtol=0.0, atol=1.0e-5)

    neon_logger.display('bprop is verified')

    return
Exemplo n.º 8
0
train_set = TextNMT(time_steps, train_path, get_prev_target=True, onehot_input=False,
                    split='train', dataset=dataset, subset_pct=args.subset_pct)
valid_set = TextNMT(time_steps, train_path, get_prev_target=False, onehot_input=False,
                    split='valid', dataset=dataset)

# weight initialization
init = Uniform(low=-0.08, high=0.08)

# Standard or Conditional encoder / decoder:
encoder = [LookupTable(vocab_size=len(train_set.s_vocab), embedding_dim=embedding_dim,
                       init=init, name="LUT_en")]
decoder = [LookupTable(vocab_size=len(train_set.t_vocab), embedding_dim=embedding_dim,
                       init=init, name="LUT_de")]
decoder_connections = []  # link up recurrent layers
for ii in range(num_layers):
    encoder.append(GRU(hidden_size, init, activation=Tanh(), gate_activation=Logistic(),
                       reset_cells=True, name="GRU1Enc"))
    decoder.append(GRU(hidden_size, init, activation=Tanh(), gate_activation=Logistic(),
                       reset_cells=True, name="GRU1Dec"))
    decoder_connections.append(ii)
decoder.append(Affine(train_set.nout, init, bias=init, activation=Softmax(), name="Affout"))

layers = Seq2Seq([encoder, decoder],
                 decoder_connections=decoder_connections,
                 name="Seq2Seq")

cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))

model = Model(layers=layers)

optimizer = RMSProp(gradient_clip_value=gradient_clip_value, stochastic_round=args.rounding)
Exemplo n.º 9
0
# weight initialization
init = Uniform(low=-0.08, high=0.08)

# model initialization
if args.rlayer_type == 'lstm':
    rlayer1 = LSTM(hidden_size,
                   init,
                   activation=Tanh(),
                   gate_activation=Logistic())
    rlayer2 = LSTM(hidden_size,
                   init,
                   activation=Tanh(),
                   gate_activation=Logistic())
else:
    rlayer1 = GRU(hidden_size,
                  init,
                  activation=Tanh(),
                  gate_activation=Logistic())
    rlayer2 = GRU(hidden_size,
                  init,
                  activation=Tanh(),
                  gate_activation=Logistic())

layers = [
    rlayer1, rlayer2,
    Affine(len(train_set.vocab), init, bias=init, activation=Softmax())
]

cost = GeneralizedCost(costfunc=CrossEntropyMulti(usebits=True))

model = Model(layers=layers)
Exemplo n.º 10
0
def test_conv_rnn(backend_default):
    train_shape = (1, 17, 142)

    be = backend_default
    inp = be.array(be.rng.randn(np.prod(train_shape), be.bsz))
    delta = be.array(be.rng.randn(10, be.bsz))

    init_norm = Gaussian(loc=0.0, scale=0.01)
    bilstm = DeepBiLSTM(128,
                        init_norm,
                        activation=Rectlin(),
                        gate_activation=Rectlin(),
                        depth=1,
                        reset_cells=True)
    birnn_1 = DeepBiRNN(128,
                        init_norm,
                        activation=Rectlin(),
                        depth=1,
                        reset_cells=True,
                        batch_norm=False)
    birnn_2 = DeepBiRNN(128,
                        init_norm,
                        activation=Rectlin(),
                        depth=2,
                        reset_cells=True,
                        batch_norm=False)
    bibnrnn = DeepBiRNN(128,
                        init_norm,
                        activation=Rectlin(),
                        depth=1,
                        reset_cells=True,
                        batch_norm=True)
    birnnsum = DeepBiRNN(128,
                         init_norm,
                         activation=Rectlin(),
                         depth=1,
                         reset_cells=True,
                         batch_norm=False,
                         bi_sum=True)
    rnn = Recurrent(128,
                    init=init_norm,
                    activation=Rectlin(),
                    reset_cells=True)
    lstm = LSTM(128,
                init_norm,
                activation=Rectlin(),
                gate_activation=Rectlin(),
                reset_cells=True)
    gru = GRU(128,
              init_norm,
              activation=Rectlin(),
              gate_activation=Rectlin(),
              reset_cells=True)

    rlayers = [bilstm, birnn_1, birnn_2, bibnrnn, birnnsum, rnn, lstm, gru]

    for rl in rlayers:
        layers = [
            Conv((2, 2, 4),
                 init=init_norm,
                 activation=Rectlin(),
                 strides=dict(str_h=2, str_w=4)),
            Pooling(2, strides=2),
            Conv((3, 3, 4),
                 init=init_norm,
                 batch_norm=True,
                 activation=Rectlin(),
                 strides=dict(str_h=1, str_w=2)),
            rl,
            RecurrentMean(),
            Affine(nout=10, init=init_norm, activation=Rectlin()),
        ]
        model = Model(layers=layers)
        cost = GeneralizedCost(costfunc=CrossEntropyBinary())
        model.initialize(train_shape, cost)
        model.fprop(inp)
        model.bprop(delta)
Exemplo n.º 11
0
def check_gru(seq_len, input_size, hidden_size,
              batch_size, init_func, inp_moms=[0.0, 1.0]):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    output_shape = (hidden_size, seq_len * batch_size)
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon GRU
    gru = GRU(hidden_size,
              init_func,
              activation=Tanh(),
              gate_activation=Logistic())

    # generate random input tensor
    inp = np.random.rand(*input_shape)*inp_moms[1] + inp_moms[0]
    inpa = gru.be.array(inp)
    # generate random deltas tensor
    deltas = np.random.randn(*output_shape)

    # run neon fprop
    gru.fprop(inpa)

    # reference numpy GRU
    gru_ref = RefGRU(input_size, hidden_size)
    WGRU = gru_ref.weights

    # make ref weights and biases the same with neon model
    r_range = range(hidden_size)
    z_range = range(hidden_size, hidden_size * 2)
    c_range = range(hidden_size * 2, hidden_size * 3)

    WGRU[gru_ref.weights_ind_br][:] = gru.b.get()[r_range]
    WGRU[gru_ref.weights_ind_bz][:] = gru.b.get()[z_range]
    WGRU[gru_ref.weights_ind_bc][:] = gru.b.get()[c_range]

    WGRU[gru_ref.weights_ind_Wxr][:] = gru.W_input.get()[r_range]
    WGRU[gru_ref.weights_ind_Wxz][:] = gru.W_input.get()[z_range]
    WGRU[gru_ref.weights_ind_Wxc][:] = gru.W_input.get()[c_range]

    WGRU[gru_ref.weights_ind_Rhr][:] = gru.W_recur.get()[r_range]
    WGRU[gru_ref.weights_ind_Rhz][:] = gru.W_recur.get()[z_range]
    WGRU[gru_ref.weights_ind_Rhc][:] = gru.W_recur.get()[c_range]

    # transpose input X and do fprop
    # the reference code expects these shapes:
    # input_shape: (seq_len, input_size, batch_size)
    # output_shape: (seq_len, hidden_size, batch_size)
    inp_ref = inp.copy().T.reshape(
        seq_len, batch_size, input_size).swapaxes(1, 2)
    deltas_ref = deltas.copy().T.reshape(
        seq_len, batch_size, hidden_size).swapaxes(1, 2)

    (dWGRU_ref, h_ref_list, dh_ref_list,
        dr_ref_list, dz_ref_list, dc_ref_list) = gru_ref.lossFun(inp_ref,
                                                                 deltas_ref)

    print '====Verifying hidden states===='
    print allclose_with_out(gru.h_buffer.get(),
                            h_ref_list,
                            rtol=0.0,
                            atol=1.0e-5)

    print 'fprop is verified'

    # now test the bprop
    print 'Making sure neon GRU match numpy GRU in bprop'
    gru.bprop(gru.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = gru.dW_input.get()
    dWrecur_neon = gru.dW_recur.get()
    db_neon = gru.db.get()
    dWxr_neon = dWinput_neon[r_range]
    dWxz_neon = dWinput_neon[z_range]
    dWxc_neon = dWinput_neon[c_range]
    dWrr_neon = dWrecur_neon[r_range]
    dWrz_neon = dWrecur_neon[z_range]
    dWrc_neon = dWrecur_neon[c_range]
    dbr_neon = db_neon[r_range]
    dbz_neon = db_neon[z_range]
    dbc_neon = db_neon[c_range]

    drzc_neon = gru.rzhcan_delta_buffer.get()
    dr_neon = drzc_neon[r_range]
    dz_neon = drzc_neon[z_range]
    dc_neon = drzc_neon[c_range]

    dWxr_ref = dWGRU_ref[gru_ref.dW_ind_Wxr]
    dWxz_ref = dWGRU_ref[gru_ref.dW_ind_Wxz]
    dWxc_ref = dWGRU_ref[gru_ref.dW_ind_Wxc]
    dWrr_ref = dWGRU_ref[gru_ref.dW_ind_Rhr]
    dWrz_ref = dWGRU_ref[gru_ref.dW_ind_Rhz]
    dWrc_ref = dWGRU_ref[gru_ref.dW_ind_Rhc]
    dbr_ref = dWGRU_ref[gru_ref.dW_ind_br]
    dbz_ref = dWGRU_ref[gru_ref.dW_ind_bz]
    dbc_ref = dWGRU_ref[gru_ref.dW_ind_bc]

    # print '====Verifying hidden deltas ===='
    print '====Verifying r deltas ===='
    assert allclose_with_out(dr_neon,
                             dr_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying z deltas ===='
    assert allclose_with_out(dz_neon,
                             dz_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying hcan deltas ===='
    assert allclose_with_out(dc_neon,
                             dc_ref_list,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_input===='
    print 'dWxr'
    assert allclose_with_out(dWxr_neon,
                             dWxr_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWxz'
    assert allclose_with_out(dWxz_neon,
                             dWxz_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWxc'
    assert allclose_with_out(dWxc_neon,
                             dWxc_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_recur===='

    print 'dWrr'
    assert allclose_with_out(dWrr_neon,
                             dWrr_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWrz'
    assert allclose_with_out(dWrz_neon,
                             dWrz_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dWrc'
    assert allclose_with_out(dWrc_neon,
                             dWrc_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on bias===='
    print 'dbr'
    assert allclose_with_out(dbr_neon,
                             dbr_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dbz'
    assert allclose_with_out(dbz_neon,
                             dbz_ref,
                             rtol=0.0,
                             atol=1.0e-5)
    print 'dbc'
    assert allclose_with_out(dbc_neon,
                             dbc_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print 'bprop is verified'

    return