def cut_positions(filename, blurred, *positions): blurred = int(blurred) pos = eval("".join(positions)) root = nc.open(filename)[0] lat = nc.getvar(root, 'lat') lon = nc.getvar(root, 'lon') data = nc.getvar(root, 'data') root_cut = nc.clonefile(root, 'cut_positions.' + filename, ['lat', 'lon', 'data'])[0] nc.getdim(root_cut, 'northing_cut', len(pos)) nc.getdim(root_cut, 'easting_cut', 2) lat_cut = nc.getvar(root_cut, 'lat', 'f4', ('northing_cut','easting_cut',),4) lon_cut = nc.getvar(root_cut, 'lon', 'f4', ('northing_cut','easting_cut',),4) data_cut = nc.getvar(root_cut, 'data', 'f4', ('timing','northing_cut','easting_cut',),4) ix = 0 for i in range(len(pos)): show("\rCutting data: processing position %d / %d " % (i+1, len(pos))) x, y = statistical_search_position(pos[i], lat, lon) if x and y: lat_cut[ix,0] = lat[x,y] lon_cut[ix,0] = lon[x,y] data_cut[:,ix,0] = np.apply_over_axes(np.mean, data[:,x-blurred:x+blurred,y-blurred:y+blurred], axes=[1,2]) if blurred > 0 else data[:,x,y] lat_cut[ix,1], lon_cut[ix,1], data_cut[:,ix,1] = lat_cut[ix,0], lon_cut[ix,0], data_cut[:,ix,0] ix += 1 nc.close(root) nc.close(root_cut)
def cut_positions(filename, blurred, *positions): blurred = int(blurred) pos = eval("".join(positions)) root, is_new = nc.open(filename) lat = nc.getvar(root, 'lat') lon = nc.getvar(root, 'lon') data = nc.getvar(root, 'data') time = nc.getvar(root, 'time') root_cut, is_new = nc.open('cut_positions.' + filename) timing_d = nc.getdim(root_cut, 'timing', data.shape[0]) northing_d = nc.getdim(root_cut, 'northing', len(pos)) easting_d = nc.getdim(root_cut, 'easting', 2) lat_cut = nc.getvar(root_cut, 'lat', 'f4', ('northing','easting',),4) lon_cut = nc.getvar(root_cut, 'lon', 'f4', ('northing','easting',),4) data_cut = nc.getvar(root_cut, 'data', 'f4', ('timing','northing','easting',),4) time_cut = nc.getvar(root_cut, 'time', 'f4', ('timing',),4) time_cut[:] = time[:] for i in range(len(pos)): show("\rCutting data: processing position %d / %d " % (i+1, len(pos))) x, y = search_position(pos[i], lat, lon) lat_cut[i,0] = lat[x,y] lon_cut[i,0] = lon[x,y] data_cut[:,i,0] = np.apply_over_axes(np.mean, data[:,x-blurred:x+blurred,y-blurred:y+blurred], axes=[1,2]) lat_cut[i,1], lon_cut[i,1], data_cut[:,i,1] = lat_cut[i,0], lon_cut[i,0], data_cut[:,i,0] nc.close(root) nc.close(root_cut)
def test_getdim(self): dims = self.dimensions with nc.loader("unittest_dims.nc", dimensions=dims) as t_root: t_dim_x = nc.getdim(t_root, "xc_k", 1) t_dim_y = nc.getdim(t_root, "yc_k", 1) t_dim_time = nc.getdim(t_root, "time", 1) self.assertEquals(len(t_dim_x[0]), 1) self.assertEquals(len(t_dim_y[0]), 1) self.assertEquals(len(t_dim_time[0]), 1) t_data = nc.getvar(t_root, "only_one_pixel", "f4", ("time", "yc_k", "xc_k")) self.assertEquals(t_data.shape, (1, 1, 1))
def test_getdim(self): dims = self.dimensions with nc.loader('unittest_dims.nc', dimensions=dims) as t_root: t_dim_x = nc.getdim(t_root, 'xc_k', 1) t_dim_y = nc.getdim(t_root, 'yc_k', 1) t_dim_time = nc.getdim(t_root, 'time', 1) self.assertEquals(len(t_dim_x[0]), 1) self.assertEquals(len(t_dim_y[0]), 1) self.assertEquals(len(t_dim_time[0]), 1) t_data = nc.getvar(t_root, 'only_one_pixel', 'f4', ('time', 'yc_k', 'xc_k')) self.assertEquals(t_data.shape, (1, 1, 1))
def cut_projected_linke(filename): root, is_new = nc.open(filename) lat = nc.getvar(root, 'lat') lon = nc.getvar(root, 'lon') data = nc.getvar(root, 'data') time = nc.getvar(root, 'time') root_cut, is_new = nc.open('wlinke.' + filename) timing_d = nc.getdim(root_cut, 'timing', data.shape[0]) northing_d = nc.getdim(root_cut, 'northing', data.shape[1]) easting_d = nc.getdim(root_cut, 'easting', data.shape[2]) lat_cut = nc.getvar(root_cut, 'lat', 'f4', ('northing','easting',),4) lon_cut = nc.getvar(root_cut, 'lon', 'f4', ('northing','easting',),4) data_cut = nc.getvar(root_cut, 'data', 'f4', ('timing','northing','easting',),4) time_cut = nc.getvar(root_cut, 'time', 'f4', ('timing',),4) lat_cut[:] = lat[:] lon_cut[:] = lon[:] data_cut[:] = data[:] time_cut[:] = time[:] linke.cut_projected(root_cut) nc.close(root) nc.close(root_cut)
def cut(filename, i_from, i_to): img_from = int(i_from) img_to = int(i_to) img_range = img_to - img_from root, is_new = nc.open(filename) lat = nc.getvar(root, 'lat') lon = nc.getvar(root, 'lon') data = nc.getvar(root, 'data') time = nc.getvar(root, 'time') root_cut, is_new = nc.open('cut.' + filename) timing_d = nc.getdim(root_cut, 'timing', img_range) northing_d = nc.getdim(root_cut, 'northing', data.shape[1]) easting_d = nc.getdim(root_cut, 'easting', data.shape[2]) lat_cut = nc.getvar(root_cut, 'lat', 'f4', ('northing','easting',),4) lon_cut = nc.getvar(root_cut, 'lon', 'f4', ('northing','easting',),4) lat_cut[:] = lat[:] lon_cut[:] = lon[:] data_cut = nc.getvar(root_cut, 'data', 'f4', ('timing','northing','easting',),4) time_cut = nc.getvar(root_cut, 'time', 'f4', ('timing',),4) for i in range(img_range): data_cut[i] = data[img_from + i] time_cut[i] = time[img_from + i] nc.close(root) nc.close(root_cut)
def cut_projected_terrain(filename): from libs.dem import dem root = nc.open(filename)[0] lat = nc.getvar(root, 'lat') lon = nc.getvar(root, 'lon') data = nc.getvar(root, 'data') time = nc.getvar(root, 'data_time') root_cut = nc.open('wterrain.' + filename)[0] nc.getdim(root_cut, 'timing', data.shape[0]) nc.getdim(root_cut, 'northing', data.shape[1]) nc.getdim(root_cut, 'easting', data.shape[2]) lat_cut = nc.getvar(root_cut, 'lat', 'f4', ('northing','easting',),4) lon_cut = nc.getvar(root_cut, 'lon', 'f4', ('northing','easting',),4) data_cut = nc.getvar(root_cut, 'data', 'f4', ('timing','northing','easting',),4) time_cut = nc.getvar(root_cut, 'data_time', 'f4', ('timing',),4) lat_cut[:] = lat[:] lon_cut[:] = lon[:] data_cut[:] = data[:] time_cut[:] = time[:] dem.cut_projected(root_cut) nc.close(root) nc.close(root_cut)